

INSTRUKTIONSBOG FOR SAILOR N1405/H1225

INSTRUCTION BOOK FOR SAILOR N1405 / H1225

A/S S. P. RADIO · AALBORG · DENMARK

CONTENTS N1405:

GENERAL DESCRIPTION	2
APPLICATION OF AC/DC POWER SUPPLY N1405	
TECHNICAL DATA	2
CHANGE OF AC INPUT VOLTAGE	3
PRINCIPLE OF OPERATION	3
INSTALLATION IN CONJUNCTION WITH A RACK	3
INSTALLATION WITH CABINET H1225	4
INSTALLATION WITH A SAILOR SSB TRANSMITTER T121,	
T122, T124, T126 or T128	4
OTHER POSSIBLE MUTING FUNCTIONS	
CONNECTION CABLES	7
COMPONENT LOCATION/EXTERNAL CONNECTIONS	8
PARTS LIST	9
SCHEMATIC DIAGRAM	13

CONTENTS H1225:

MOUNTING INSTRUCTION	14
DIMENSIONS H1225, N1405, H1209 & H1223	14
RECEIVER AERIAL	15
RECEIVER EARTH	15
FIG. 1	16
FIG. 2	17

GENERAL DESCRIPTION

SAILOR N1405 is a combined AC/DC power supply intended to supply a SAILOR SSB short-wave receiver from AC mains or from a 24V battery. With both AC and DC supply present the N1405 automatically takes its supply from the AC mains. If the AC mains fails the N1405 automatically and with no break switches over and takes its supply from the 24V battery (ex. the emergency battery).

APPLICATION OF AC/DC POWER SUPPLY N1405

SAILOR N1405 can be used to supply a SAILOR SSB short-wave receiver which is located either in a rack as part of a short-wave station, in conjunction with a SAILOR SSB transmitter, or a separate receiver.

TECHNICAL DATA

The power supply N1405 delivers all necessary voltages to a SAILOR SSB short-wave receiver (R1117, R1119 and R1120).

Input voltages

Output voltages

ർ

: AC: 110/127/220/237V <u>+</u>10%

50 - 60 Hz

DC: normal voltage 26.4V

extreme voltage 21.6 ... 31.2V

: DC stabilized: 22V max. load 1A

8V max. load 1A

If the 8V is unloaded the max. load on 22V can be increased to 1.4A.

DC unstabilized: -45V max. load 0.1A

Operation temperature range : -15°C to 55°C

Cooling

: The cooling takes place via convection, and adequate free space around the power supply shall be ensured.

The openings must not be covered.

CHANGE OF AC INPUT VOLTAGE

In order to change the AC input from the low values 110/127V to the high values 220/237V or inverse following components must be altered together with change of strapping on TR102 (see the diagram).

 Fuse F101

 110/127V AC
 0.8A time_lag

 220/237V AC
 0.5A time_lag

Relay RE101 110/127V AC 220/237V AC

WSU/GD-6-C BV1062 WSU/GD-7-C

PRINCIPLE OF OPERATION

The main switch on the receiver controls if the power supply N1405 shall be connected or not. If AC mains is present RE101 is activated and the DC supply is prevented

from getting connected.

If no AC mains is present the break contact of RE101 is closed and the relay RE103 is activated, whereby the DC supply is connected to the DC-DC converter, the converter consisting of the transformers TR101 and TR102 and the transistors T101 and T102 will operate.

The outputs from TR102 are rectified, filtered and stabilized in a circuit which are used for both AC and DC operation.

The relay RE102 is activated when the power supply is operating from a DC supply, the open break-contact of RE102 disconnects the transformator from the AC mains and no noise from the converter is allowed to make disturbance on the AC mains.

INSTALLATION IN CONJUNCTION WITH A RACK

This type of installation can take place in cases where the receiver R1117 is replaced with one of the receivers R1119 and R1120 and the actual power supply N1400 or N1401 do not have built-in 8V supply.

Another situation for using this type of installation is when it is required that reception shall perform with no-break.

Installation procedure

- 1 The receiver which shall be replaced is removed from the rack.
- 2 The cable N1405 H1204 is used and the plug P101 is connected with the receptacle J2001 of the rack.
- 3 The plug P102 of the cable N1405 H1204 is then led out through hole F (the left one in the room for the receiver) to the power supply N1405 and inserted in the receptacle on the power supply N1405. NB! When leading the cable through hole F it may be necessary to remove the rack from its place.
- 4 The power supply N1405 is wall mounted with adequate space around it and far away from heaters. The openings must be free.
- 5 The receptacle J102 is inserted in plug J2004 of the receiver. Do also insert the aerial plug. Remember to tune the aerial trimmer on 2182 kHz. The receiver can now be pushed into its correct position again. NB! The control functions and outputs specified on the terminal board of N1405 are out of function.

INSTALLATION WITH CABINET H1225

This type of installation is used when a SAILOR SSB short-wave receiver is used for special purposes ex. Telex-, Teleprinting-, Broadcast- or Watch Keeping receiver.

Installation procedure

ൻ

- 1 The receiver in its cabinet is placed in the required position.
- 2 With the cable N1405 R111X the receiver is connected to the power supply N1405.
- 3 When the cover of N1405 is removed the terminal board of N1405 is accessible. Supply voltages are led to terminals for AC and DC input.
- 4 Depending on the use of the receiver the required inputs and outputs are connected to the terminal board. Technical informations concerned are found in the instruction books for the actual receiver with the belonging cabinet (informations about muting on page 6).

INSTALLATION WITH A SAILOR SSB TRANSMITTER T121, T122, T124, T126 or T128.

Installation and operation in conjunction with one of the above transmitters is possible (except T122 with AC power supply and T121, T124 and T128 with 12V DC supply).

INSTALLATION WITH A SAILOR SSB TRANSMITTER T121, T122, T124, T126 or T128 cont .:

Installation procedure

- 1 The receiver is connected to the power supply N1405 with a cable type N1405 R111X.
- 2 On the terminal board of N1405 two pieces of wire jumpers are established, one between SIMPLEX RELAY **_** and TT FROM TELEX and the other between SIMPLEX RELAY and the other TT FROM TELEX terminal.
- 3 From the receiver supply plug of the actual transmitter some connections to the terminal board of N1405 are made.
 - a. the pins No. 3 & 5 are connected to the two terminals marked MUTING INPUT B.
 - b. the pin No. 4 is connected to the terminal marked SIMPLEX RELAY
 - c. the pin No. 6 is connected to the terminal marked AF TO TX,
 - d. the pin No. 1 is connected to the terminal marked AF FROM TX,
- 4 From pins Nos 2 and 6 of the plug on the cable coming from the power supply belonging to the transmitter a couple of wires are taken (the voltage is named start power supply) and led to the terminals marked MUTING IN-PUT A.
 - NB: For T122 only, pins Nos 3 and 5 of the plug J704 EXT. RELAY are used instead.

OBS! No wire jumpers between A.B.C. terminals.

With the installation made as specified above the SAILOR SSB short-wave receiver can operate normally in conjunction with the mentioned SAILOR SSB transmitters.

യ

Connections between T12X and N1405 terminal board.

Power	Pin 2		
Supply			MUTING
Socket	Pin 6	>	INPUT A
			MUTING

AF TO TX AF FROM TX SIMPLEX RELAY

6 Pin Male Plug Hirschmann type Mes 60Z

OTHER POSSIBLE MUTING FUNCTIONS

Case A

The receiver must be muted when a 24V DC voltage is present.

- 1 Make wire jumpers between
 - a. SIMPLEX RELAY \perp and TT FROM TELEX,
 - b. SIMPLEX RELAY and the other TT FROM TELEX,
 - c. A AND B TERMINALS.
- 2 Connect the control voltage 24V DC to the two terminals marked MUTING INPUT A.

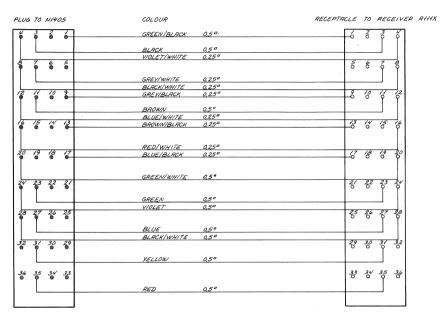
Case B

The receiver must be muted when no voltage is present and in function when a 24V DC is present.

- 1 Make wire jumpers between
 - a. SIMPLEX RELAY ⊥ and TT FROM TELEX,
 - b. SIMPLEX RELAY and the other TT FROM TELEX,
 - c. B AND C TERMINALS.
- 2 Connect the control voltage 24V DC to the two terminals marked MUTING INPUT B.

Case C

The receiver must be muted when a voltage of + or - 24V DC with reference to the chassis of the receiver is present.

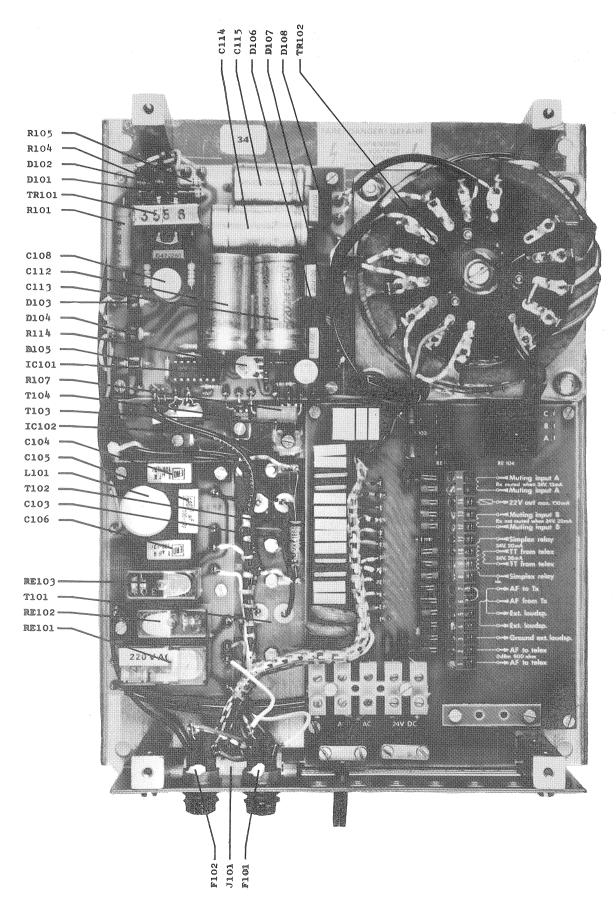

- 1 Make wire jumpers between
 - a. SIMPLEX RELAY \perp and TT FROM TELEX,
 - b. SIMPLEX RELAY and the other TT FROM TELEX.
- 2 Connect the coltrol voltage to the two terminals SIMPLEX RELAY and TT FROM TELEX (already connected).

Case D

The receiver must be muted when a contact is closed (the contact must not have any connection to chassis or other voltages).

- 1 Make wire jumpers between
 - a. SIMPLEX RELAY **_** and TT FROM TELEX,
 - b. SIMPLEX RELAY and the other TT FROM TELEX.
- 2 Connect the contact between the joint of the terminals SIMPLEX RELAY and TT FROM TELEX and the terminal 22V OUT max. 100 mA.

CONNECTION CABLES

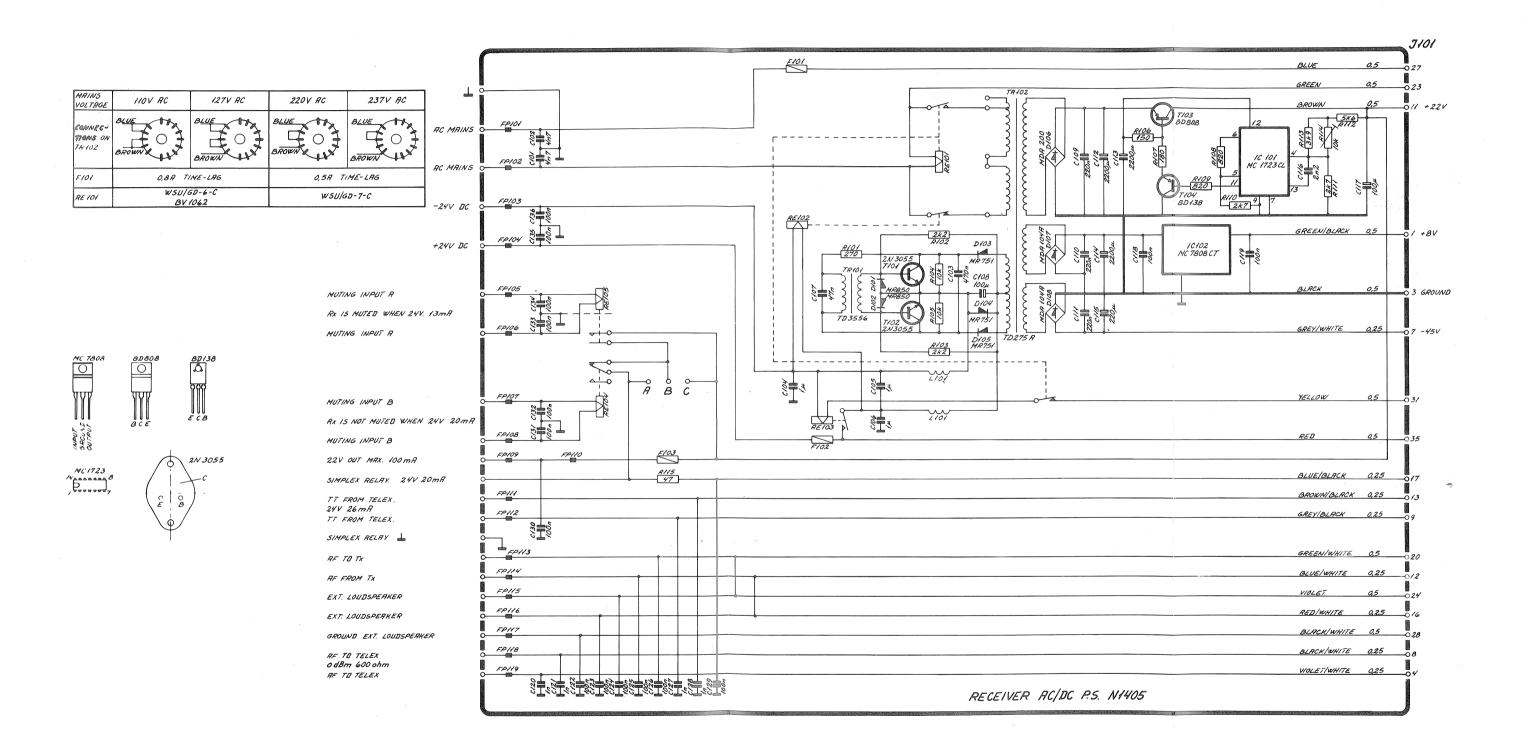


CABLE NI405-RIIIX

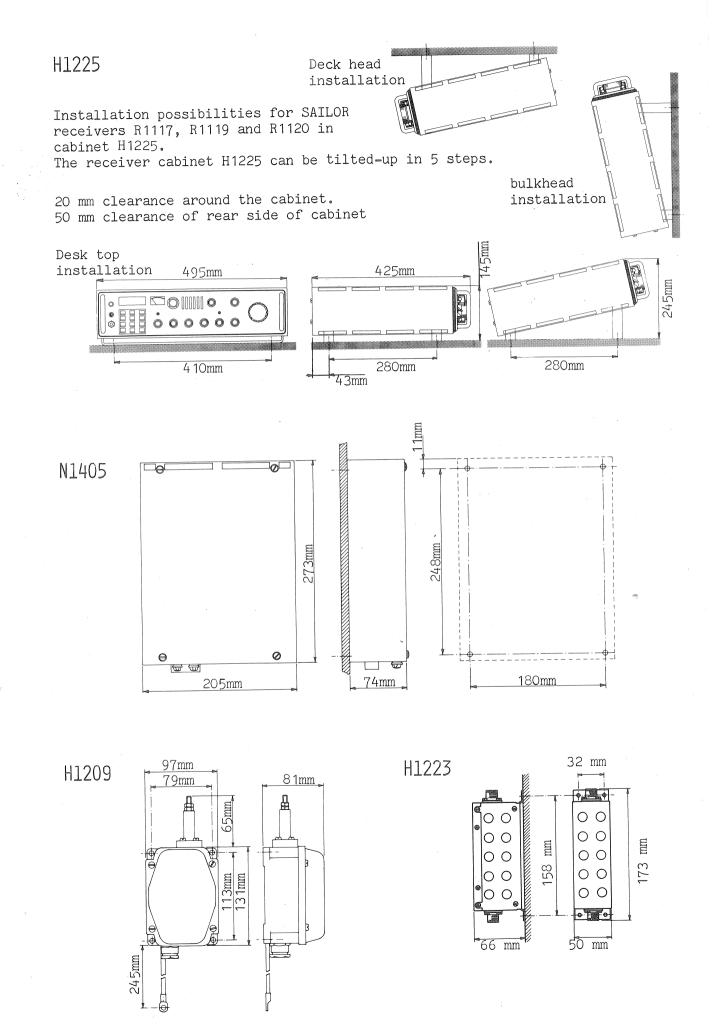
CABLE N1405-H1204

COMPONENT LOCATION/ EXTERNAL CONNECTIONS

Recei	ver	AC/DC	Power	Supply	SAILOR	N1405	
Symbol				Description	n		 Manuf


	iver AC/DC Power Supply SAILOR N1		
Symbol	Description	Manufact.	
R101	Resistor 270 ohm	7W Philips	2322 329 07271
R102	Resistor 2.2Kohm	0.5W Philips	2322 212 13222
R103	Resistor 2.2Kohm	0.5W Philips	2322 212 13222
R104	Resistor 10Kohm	0.5W Philips	2322 212 13103
R105	Resistor 10Kohm	0.5W Philips	2322 212 13103
R106	Resistor 150 ohm	0.33W Philips	2322 211 13151
R107	Resistor 180 ohm	4W Philips	2322 329 04181
R108	Resistor 820 ohm	0.33W Philips	2322 211 13821
R109	Resistor 820 ohm	0.33W Philips	2322 211 13821
R110	Resistor 2.7Kohm	0.33W Philips	2322 211 13272
R111	Resistor 2.7Kohm	0.33W Philips	2322 211 13272
R112	Resistor 5.6Kohm	0.33W Philips	2322 211 13562
R113	Resistor 3.9Kohm	0.33W Philips	2322 211 13392
R114	Potentiometer 10Kohm	NOBLE	TM8 KV2-1S/10K
R115	Resistor 47 ohm	0.33W Philips	2322 211 13479
C101	Capacitor, ceramic 4.7nF	5kV Ferroperm	9/0138.9 isol.
C102	Capacitor, ceramic 4.7nF	5kV Ferroperm	9/0138.9 isol.
C103	Capacitor 470nF	250V ERO	MKC 1860-447/2
C104	Capacitor, polyester luF	100V ERO	MKT 1822-510/0
C105	Capacitor, polyester luF	100V ERO	MKT 1822-510/0
C106	Capacitor, polyester luF	100V ERO	MKT 1822-510/0
C107	Capacitor, polyester 47nF	250V ERO	MKT 1822-347/2
C108	Capacitor, electrolytic 100uF	40V FRAKO	EP-100 uF/40V
C109	Capacitor, polyester 220nF	100V ERO	MKT 1822-422/0
C110	Capacitor, polyester 220nF	100V ERO	MKT 1822-422/0
C111	Capacitor, polyester 220nF	100V ERO	MKT 1822-422/0
C112	Capacitor, electrolytic 2200uF	40V Siemens	B41010-C7228-T
C113	Capacitor, electrolytic 2200uF	40V Siemens	B41010-C7228-T
C114	Capacitor, electrolytic 2200uF	25V Siemens	B41010-C5228-T
C115	Capacitor, electrolytic 220uF	100V Siemens	B41010-D9227-T
C116	Capacitor, ceramic 2.2nF	40V Ferroperm	
C117	Capacitor, electrolytic 100uF	25V FRAKO	EP-100 uF/25V
C118	Capacitor, polyester 100nF	250V Philips	2222 352 45104
C119	Capacitor, polyester 100nF	250V Philips	2222 352 45104
C120	Capacitor, polycarbonate lnF	630V ERO	KC 1849-210/6
C121	Capacitor, polycarbonate lnF	630V ERO	KC 1849-210/6
C122	Capacitor, polyester 100nF	100V ERO	MKT 1822-410/0
C123	Capacitor, polyester 100nF	100V ERO	MKT 1822-410/0
C124	Capacitor, polyester 100nF	100V ERO	MKT 1822-410/0

Receiver AC/DC Power Supply SAILOR N1405


Symbol	Description	Manufact.		
0125	Capacitor, polyester 100nF	100V	EBO	MKT 1822-410/0
C126	Capacitor, polyester 100nF			MKT 1822-410/0
C127	Capacitor, polycarbonate lnF	630V		KC 1849-210/6
C128	Capacitor, polycarbonate 1nF	630V	ERO	KC 1849-210/6
C129	Capacitor, polyester 100nF	-		MKT 1822-410/0
C130	Capacitor, polyester 100nF	100V		MKT 1822-410/0
C131	Capacitor, polyester 100nF	100V		MKT 1822-410/0
C132	Capacitor, polyester 100nF	100V		MKT 1822-410/0
C133	Capacitor. polyester 100nF	100V		MKT 1822-410/0
C134	Capacitor, polyester 100nF	100V		MKT 1822-410/0
C135	Capacitor, polyester 100nF	100V		MKT 1822-410/0
C136	Capacitor, polyester 100nF	100V		MKT 1822-410/0
FP101- FP119	Ferrit bead		Kaschke	K3/1200/0.1Hz 4/2/7A
				7/ ~/ /11
T101	Transistor		Motorola	2N 3055
Г102	matched pair Transistor		Motorola	2N 3055
Г103	Transistor		Motorola	BD 808
г104	Transistor		Philips	BD 138
D101	Diode		Motorola	MR 850
D102	Diode		Motorola	MR 850
D103	Diode		Motorola	MR 751
0104	Diode		Motorola	MR 751
0105	Diode		Motorola	MR 751
0106	Diode, bridge		Motorola	MDA 200
0107	Diode, bridge		Motorola	MDA 104 A
0108	Diode, bridge		Motorola	MDA 104 A
C101	Integrated circuit		Motorola	MC 1723 CL
IC102	Integrated circuit		Motorola	MC 7808 CT
L101	Choke		ERO	F1753-210-124
FR101	Transformer.	drive	TRADANIA	TD 3556
FR102	Transformer		TRADANIA	TD 275 A
RE102	Relay		PASI	KH/R-3-C

Symbol		Description	1		Manufact.	
RE103	Relay			F	PASI	KH/A-3-C
RE104	Relay			2	TT	LZ 24H
RE105	Relay			C	Clare	PREME 15003A
			A time-lag	I I I I I I I I I I I I I I I I I I I	ELU	2.5AT/5x20mm
F102	Fuse		A time-lag		ELU	0.16AT/5x20mm
F103	Fuse		A time-iag			
		version only	A time log		ELU	0.8AT/5x20mm
F101	Fuse	0.8	A time-lag		ELU	0.0AI/ JA20mm
RE101	Relay			1	PASI	WSU/GD-6-C BV 106
	220-237V	version only				
F101	Fuse	0.5	A time-lag	-	ELU	0.5AT/5x20mm
RE101	Relay				PASI	WSU/GD-7-C
						R.

•

MOUNTING INSTRUCTION

RECEIVER AERIAL:

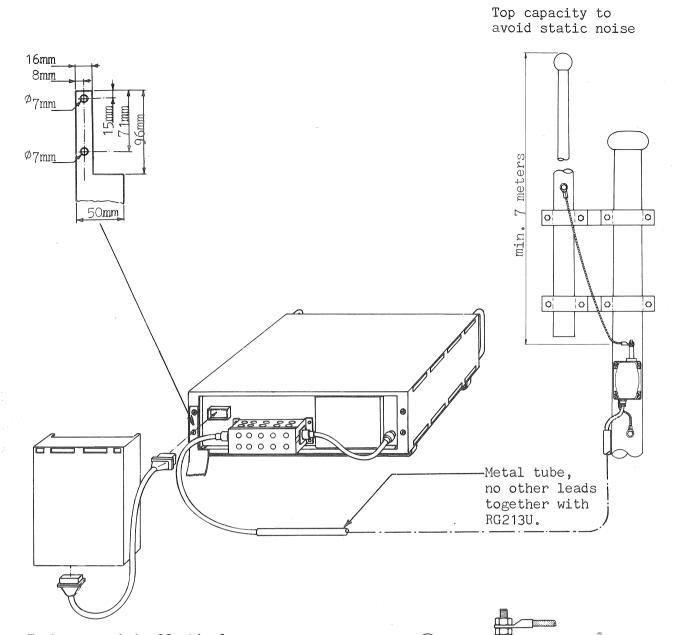
For receiver aerial use a 6-9 meter long whip aerial, e.g. KUM850, placed as high and as much in the clear as possible, and for duplex reasons as far as possible from the transmitter aerial.

For lead-in use either 50 ohm coaxial cable, e.g. RG213U, mounted in a grounded steel tube or 50 ohm triaxial cable, e.g. SAILOR H213. See fig. 1 and fig. 2. (The losses for the lead-in cable shall be equal to or less than for RG213U).

For aerial and cable connection use a junction box mounted at the footpoint of the aerials. The junction box must be designed for outside mounting in maritime environments. E.g. SAILOR H1209, see fig. 1 and fig. 2.

NOTE: The aerial must be connected directly to the cable. No transformer or protection diodes must be used. If the receiver has to be protected against a near by transmitter, use the SAILOR RECEIVER PROTECTION UNIT H1223 shown at fig. 1 and fig. 2.

If it is impossible to use a whip aerial, a wire aerial may be used. Keep the aerial as vertical as possible. For good short-wave performance keep the length between 6 and 12 meters. For good duplex performance keep the angle between the aerial lead-in and the transmitter aerial as perpendicular as possible.


EARTHING:

Aerial lead-in: see fig. 1 and fig. 2.

Receiver without transmitter: In iron vessels the earthband is led to the deck (hull) of the vessel or to the deckhouse.

In fibre-glass and wooden vessels the earthband is led either to a keel bolt if the vessel has an external ballast keel (sailing vessels), or to an external metal plate of at least 1 sqm. on the hull below the water-line.

Receiver in conjunction with a transmitter: Connect the earthband to the transmitter earth terminal in the shortest possible way to keep the receiver at the same RF potential as the transmitter.

To be grounded effectively .-

If metal mast to mast.

Metal mast must be connected to either metal hull or to grounding system.

If wooden mast to cu-strip (50x1) fastened to the mast and connected to tube around RG213U.

In the lower end the strip must be connected to hull (if metal ship) or to separate grounding system (equal to transmitter system) close to mast.

All standing rigging must in the top end be connected to metal mast or cu-strip and in the receiver end to cu-strip or grounding system.

To avoid crackling noise make all connections by welding, bolting or soldering.

NOTE

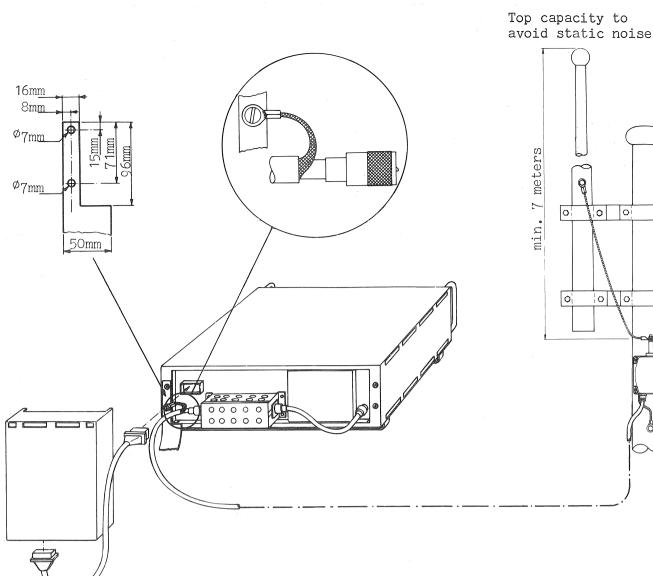

Do not use other cables than 50 ohm coaxial cable with same electrical data as RG213U.

FIG. 1

WHIP RECEIVER ARRANGEMENT FOR SHORT WAVE RECEIVER WITH COAXIAL CABLE

209

H1

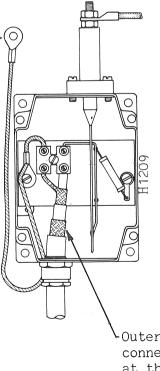
To be grounded effectively .-

If metal mast to mast.

Metal mast must be connected to either metal hull or to grounding system.

If wooden mast to cu-strip (50x1) fastened to the mast.

In the lower end the strip must be connected to deck (if metal ship) or to separate grounding system (equal to transmitter system) close to mast.


All standing rigging must in the top end be connected to metal mast or cu-strip and in the receiver end to cu-strip or grounding system.

To avoid crackling noise make all connections by welding, bolting or soldering.

FIG. 2

WHIP RECEIVER ARRANGEMENT FOR SHORT WAVE RECEIVER WITH TRIAXIAL CABLE

17

Outer screen is not connected to ground at this end.

0

0

NOTE

Do not use other cables than 50 ohm triaxial cable with same electrical data as RG213U. E.g. SP type H1213.