ADVANCED PL/1 PROGRAMMER'S MANUAL

March, 1977

Data and Instruction Formats

Introduction

The microprocessor used in the Q1/LMC has such a low-level in-
struction set thal it is impractical to usc it for compiler output.
The resulting program would use too much memory if it were.
Instcad, Q1/PL/T gencrates a pseudo-machine code which is much
more powerful and compact. This code is interpreted by the op-
erating system in much the same manner that a microprogram
executes macroinstructions.

The pseudo-machine is a stack machine. All addresses and inter-
mediate results appear in a First-in/First-out storage arca. The
instruction set is primarily reverse polish in nature: the operand
address appears or is computed before the operators are executed
al which time the operands are in the stack.

Instruction Format

The following table gives the properties of the instructions, which
may be one, two or three bytes. All stack data which is used is
removed from the stack. In arithmetic and logical operations, the
resutt is placed on top of the stack.

Op-codes could range up to 3I;jg. The operating system will in-
terpret higher values as the most significant byte of an address
which will be put on the stack.

PSEUDO-MACHINE INSTRUCTION SET

Opcode Description

00 Stack a binary number from the address on top of the stack.

01 Stack a floating decimal number from the address on top
of the stack.]

02 Stack a fixed decimal number from the address on top of
the stack.l,2

03 Store the binary number which is on top of the stack at
“the location pointed to by the address next to the Lop.

04 Store a floating decimal number.!

05 Store a decimal number as a fixed point.1,2

06 Store a string of bytes. Uses 4 binary numbers from

stack. Top is number of bytes of source string, followed
by address of source string followed by size and address
of destination string. String padded with binary zero or
truncated as necessary.

07 Compare binary numbers. Stack binary zero if falsc;
-1if true3

08 Compare decimal.3

09 Compare character strings.3

0A Adds the two binary numbcers on top of the stack.

0B Add decimaf.

0C Replace the binary number on top of the stack with its
negation.

I Number of bytes.

2 Scale is 4016 plus number of bytes hefore decimal point
plus 801¢ if lcast significant digit is not used.

3 Relation Type: Relation Type is 4 if truc when next
to top operand is greater than top operand plus 2 if true
when equal plus 1 if true when less than.

0D
OE

10
11

12
13
14
15

16
17
18

19

1B

1C
1D

Negatce decimal.
Multiply binary.
Multiply decimal.
Divide binary.
Divide decimal.
And binary.

Or binary.

Ones complement binary.

The PUT statement will direct data to the specified
device driver address.

Convert {rom character to binary.
Convert (rom character to decimal.

Convert from binary to decimal. For operand next to
the top of stack.

Convert from hinary to character.

Convert from decimal to character.

Return to operating system for next program.
Go to address on top of stack.

Go to address on top of stack if binary number next to
top is not zero.

Call to address on top of the stack. Parameter addresses
will be removed from the stack until a zero is encountered.

Return from subroutine.

Do loop control {for binary indexes. Go to address on top
of stack if signs of operands third and fourth from top
differ or the latter is zero. Otherwise, go to address next
1o top.

Same for decimal.

Open file. File description address is on top of stack.
Get new line of keyboard input.

Get decimal number from input.

Get character string from input. Length is on top of
stack and address is next to top.

26
27
28

29

2A

2B

2C

2D
2E

2F

30

31

32

33

34

35

Put character string.
Put decimal number.

Put Edit character string. Ficld size is on top of stack
with string description next.

Put Edit decimal number. Description of picture string
is on top of stack with number next.

Output character next to top of stack the number of
times indicated by the number next to the top.

Read from disk. Stack from top is: file description ad-
dress, memory space available for cach record, and target

“address. |

Write on disk. Same stack format as Read.!
Rewrite on disk. Same stack format as Read.!

Read key. Stack from top is: key offset, target address,
memory space per record, file description address, key ad-
dress, key length.]

File description address is on top of stack.

Character string description on top of stack is replaced by
binary number indicating its length.

Same as store string operator (06) cxcept destination is
not padded and the description of the unused portion of
the destination string is left on the stack.

The second byte of the instruction is put on the stack
as binary number.2

The sccond byte and third bytes form a binary number
which is put on the stack.3

VERIFY function. " Two character string descriptions are
on the stack, sccond parameter first.

INDEX function. Same format as VERIFY,
1 Nuimber of records,
2 Constant.

3 2 Byte Constant.

Character Data Format

Character data is stored in ASCII using the codes described in the
Q1 Processor Manual. Il the string does not have its maximum
length, it is padded with binary zeros.

Floating Decimal Number Format

The most significant bit of the first byte is the sign {one, il nega-
tive). The rest of this bytc is the cxponent {base 100) plus 407¢.
The remaining bytes are digits. Thus, 3.74 is represented as
0314 * 1001 or 41 03 14.

Fixed Decimal Format
The most significant hall of the lirst byte is 8 if negative and zcro
it positive, the digits (cllow.

Binary Format
The least significant byte is first, cxcept for addresses within the
program.

Stack Format

FIXED numbers are converted to FLOAT when they are stacked,
and converted back to FIXED when stored. FLOAT numbers arc ¢
represented the same in the stack as regular memory except that
the exponent is on the top of the stack making the order of the
byles opposite.

Arrays

In multidimensional arrays, elements with the first subscript the same
arce stored together. The address of an array clement is computed
by multiplying cach subscript times a predetermined constant and
adding the result to a base address which may not be inside the ar-
ray. This basc address and the fength of a single element are printed
for the array when a printout of variable attributes is requested.

Procedures

An eight byte huffer for function values is allocated before cach pro-
Ledure in case it is a function. At the entry point there is a list of
addresses where the argument addresses are to be stored, terminated

by a 3 for a PL/1 subroutine or a zero for assembly language. The

argument addresses are fetched from their locations.

Files
Refer to the documentation of the disk scction of the operating sys-
tem for the format of the file description and the Tiles.

In order 1o obtain a {isting ol the addresses and lengths (in bytes)

for cach variable and constant, as well as the memory usage for the
entirc program, cnter PLT,L FILE. To obtain memory usage only,
enter PLLT,S FILEA.

FLOAT XXXX
A 6 byte floating point number will be displayed "from XXXX.

CHAR XXXX
A character string will be displayed from XXXX.

PATCH XXXX XX XX XX.......
A string bytes starting at XXXX will be changed to XX XX XX......
for however many bytes are entered.

Display Data
A typical instruction might he displayed as (ollows:

P=431F 1=0B M=F5 STACK: 1.37 250 17162(430A)

The instruction is at 4301 It is a OB. Looking this up in the
table above shows this to be a decimal add. 1t will add the two
numbers at the top of the stack, 1.37 and 250. Advancing once
instruction shows the result about 10 be stored at address 130A,
a 6 byte floating point number.

P=4320 1=0406 M=F5 STACK: 251.37 |71 62(430A))

Binary numbers are shown in bhoth decimal and hex since they may
be used as addresses. Character strings are displayed as two binary
numbers:a length and an address. ‘M=’ shows the byte refer-
enced by the MEM command. 1t will not appear if this command
has not been given.

USING THE DEBUG ROUTINE

Preparation
In order to use the DEBUG routine, it is necessary to know the ad-
dresses of labels and variables. To request a printout of these, enter
the following:

PLT,L FILEA
It is often uscful 1o put labels on the statements that are suspected
of being faulty so that their addresses will be known. Also, it is
advisable to put a label on the last END statment so the last address
of the program will be known. This address should not be above
6800 where the regular DEBUG routine resides.

Now cnter:
DEBUG *
The display will recad: ENTER DEBUG COMMAND:

Commands

XXXX is used to indicate a four digit hexadecimal number. These
commands may be entered any time the program being debugged is
not in execution.

STEP

Each instruction will be displayed as the program is exccuted. The
return key or the space bar may be used 1o advance to the next
command.

TT XXXX

T2 XXXX

T3 XXXX

T4 XXXX

After a RUN command is issued, the program will stop at XXXX and
display the instruction. Using any onc of these commands overrides
the previous use of that command but docs not affect the other T7s.

GO
The program will exccute until stopped by a T or MEM command.

MEM XXXX
The program will stop and the instruction will be displayed after
the byte at XXXX is changed.

HEX XXXX
16 bytes starting a1 XXXX wilt be displayed in HEX.

Additional Library Subroutines

This chapter deseribes subroutines in the standard library which are
not described in the PL/1 Programming Manual.

Disk Drive Selection
To restrict opening of files 1o a specific disk drive:

CALL CHOOSE(N);

where N is a binary variable or an integer. .

Files will only be opened on drive N until the restart button is
pushed or another call to this subroutine is made. Once a file has
been opencd on a particular drive READ, WRITE, REWRITE and
close will operate on the drive for which the file was opened re-
gardless of any further call to this subroutine.

To return 1o all drives being allowed:

CALL CHOOSE(0);

For example, suppose we wish to copy a ten record file named
SCUM on drive 1 to a file of the same name on drive 2.

DCL SCUM FILE;

DCL BUFFER({10) CHAR(100); /*RECORDS WILL BE
STORED FHIERE®/

OPEN SCUM; /*WILLL BE ON FIRST DRIVE*/

DO =1 to 10;

WRITE FILE(SCUM) from(BUFFER({I});

END;

CLOSE SCUM;

CALL CHOOSE(0); /*RETURN TO ALL DRIVES
AVAILABLE*/

END;

Function Keys

Each line of keyboard inpul may be terminated by the return key
or any of the function keys. The KEYFUN subroutine can be used
to obtain the code of the key which terminated the line of input:

CALL KEYFFUN(I);

I'is a binary variable which reccives the code of the function key.
It there has not been o line of keyboard input since the last call to
KEYFUN, I will receive zero. Refer 1o the Q1/LMC Reference
Manual for the codes for the keys, keeping in mind that the codes
are given in hexadecimal, whercas the compiler uses decimal. Also
note that once a lunction key is pushed, the operating system will
ignorc all further key depressions until the line of input has been
disposed of by the proper GET statement.

In the following example, a time consuming calculation proceeds on
an array. The operator may at any time inquirc aboutl the content
of any of the elements of the array by entering the subscript.

DCL X{100) INIT ({5)0, (10)2, (15)3, (20)4, (25)5, (25)6);
CALL KEYFUN; /*CLEAR ENTRY CODE*/
DO J=1 TO 100;
DO 1=1 TO 99;
X{()=54(X(N+(1+1});
CALL KEYFUN(N);
IF N THEN DO; /*KEYBOARD ENTRY?*/
GET SKIP LIST(K);
PUT SKIP LIST(X{K));
END;
END; END; END;

Simulated Keyboard Entry
The operating system can be made to believe that a character string
was typed by the operator as follows:

CALL TYPIST(CH,1);

CH is a character variable or constant and [is a binary variable or
integer giving the number of characters,

In the example below the program calls the SORT routine. A program
named ROVER will be ioaded after the SORT is finished.

CALL TYPIST(SORT FILEA FILEB ROVER?,23);
END;

Thc? character is the code for the return key. It is entered by
three keys: HEX O D.

Machine Level Output

CALL QUTPUT (1,));

This subroutinc is the equivalent of an assembly language OUT in-
struction. Device address | will receive | as output. The Q1/LMC
Processor Manual shows that if a 2 (binary 00000010) is output to
address 1 {keyboard), a beep will be produced and the keyboard
will be in the lower case mode:

CALL OUTPUT (1,2);

Line Printer

Printer output can be directed to the line printer instcad of the stan-
dard printer by the statement CALL 1LPON(1); where the 1 is a
dummy parameter, required because a library subroutine must have
at least one parameter to be identified as such. Output will continuc
to be dirccted to the line printer until the restart button is pushed
or a CALL LPOFF(1);.

Variable File Names

A file name may be changed from the keyboard by CALL KFILE(XXX);
all references to the file will be to XXX. (XXX must be declared FILE
before this statement and opened after it.) No references 1o the actual
file name arc made in the program since this is not known when the
program is compiled. An example of this usage appears below.

Multiprogramming

It is possible to execute two programs simultancously, provided onc
of them is written with this in mind and docs not usc the keyboard
and display once the dual program mode is entered. The dual pro-
gram mode is entered by calling MULTI. Instead of ending normally,
the program should call UNMULT!} when it is finished. The two
programs should not interfere with each other's use of memory.

For example, the program below prints one file while another file is
being edited:

DCL DUMMY(64) CHAR(128); /#*SKIP FIRST 8K BYTES*/
DCL WHAT FILE;
DCL THAT CHAR(80);
CALL KFILE(WHAT);
OPEN WHAT;
CALL MULTI(1);
LOOP: ON ENDFILE GO TO UN;
READ FILE(KFILE) INTO (THAT);
PUT SKIP LIST(THAT):
GO TO LOOP;
UN: CALL UNMULTI(I);
L‘ND,‘

Suppose this program were compiled and copied from * (compiler
output file) to SPRINT. The scquence of commands required to
print FILEB while editing FILEA would be:

SPRINT FILEB

EDIT FHLEA

Both of these would be in response to “Q1 LMC AT YOUR SERVICE.”

In the preceding example, the allocation of processor time will be

taken care of quite efficiently by MULTI: EDIT will receive con-

trol of the processor when SPRINT is waiting for the printer, and

SPRINT will receive control of the processor when EDIT is waiting
for keyboard input.

In cases where one program is never limited by the printer, control
may be turned over by additional calls to MULTI. Below is a pro-
gram which adds a constant to cach record of a file while another
program can be cxccuted in the first 8K bytes.

DCL DUMMY(64) CHAR(128);

DCL MY FILF;

DCL 1 INFI,

' 2 X,

2 NAME CHAR(90);

OPEN MY;

PUT FILE{DISPLAY) SKIP LIST(*ADD HOW MUCH?’);

GET SKIP LIST(Y); /*MUST BE BEFORE CALL MULTI*/

PUT FILE(DISPLAY)} SKIP; /*CLEAR DISPLAY*/
LOOP: CALL MULTI(1); /*GIVE OTHER PROGRAM TIME*/

ON ENDFILE GO TO EOJ;

READ FILE(MY) INTO (INFI);

X=X+Y;

REWRITE FILE{MY) FROM (INFI);

GO TO LOOP;
EOJ; CALL UNMULTI(1);

END;

Linkage to Assembly Language Subroutines

Although the linkage is somewhat complex, it is possible to call an
assembly subroutine from a PL/1 program. This makes possible high
speed manipulation, communications, and auxiliary 1/O devices.

Parameter Passing

The first line of the subroutine should be a list of addresses where the
parameter addresses arc 1o be stored before control is given to the sub-
routine. This list must be in high order byte format, so the CON op-
crator must be used instead of the ADCON operator. The addresses
from hex 4210 to 42FF should be used:

CON 042,010,042,012,042,014,0

This list means that there are three parameters, the addresses of which
are to be stored at 4210, 4212, and 4214. The zcro indicates the end
of the list.

Coding the Subroutine

The SET operator should not he used. This is so that the subroutine
will be relocatable. In the example below, the first parameter is shifted
feft the number of bits indicated by the second parameter.

START: CON 042,010,042,012,0 TWO PARAMETERS

LHE 04212 2ND PARAM. ADDRESS
L,C NUMBER OF SHIFTS
LHL 04210
L,k LOW BYTE OF OPERAND
IND,H
L,D HIGH BYTE
XCH OPERAND TO HL
LOOP: DAD,H SHIFT ONE BIT
DEC,C COUNT BITS
JNZ LOO?P
XCH
ST,D STORE RESULTS
DCD,H
ST,E
R RETURN TO INTERPRETER
END !

Putting the Subroutine into the Library

The subroutine must be assembled into the * file. The * file is where
the compiler puts the code it gencrates. Assuming the source code
listed above is in a file called SHIFTY, we would enter:

ASM SHIFTY *

Now use the CAT routine to put it into the library:
CAT

ENTER ENTRY POINT NAME SHIFT

ADDRESS? 4300

LAST ENTRY POINT? YES

The entry point address was the value given for the nmeumonic
START (the entry point name in the source code) given by the
asscmbler,

Calling the Subroutine
The subroutine is called in the same manner as subroutines written in
PL/1:

I=3; CALL SHIFT(1,2); PUT SKIP LIST(1); IND;
The result will be 12.

Note that the arguments must be binary since they were assumed to
be binary in the coding of the subroutine.

Putting Subroutines into the Library

Using the three catalog handling routines CAT, UNCAT, and CATLIST,
additions and changes can be made to the subroutine library file, PLTLIB.

Compiling the Subroutine
The following subroutine puts three binary numbers in ascending order.

ORDER: PROC(I,],K);
REDO: IF 1>) THEN DO; N=l; |=N; END;
IF J<KK THEN RETURN;
N=K; K=J;)=N;
GO TO REDO;
'END; [¥*END OF SUBROUTINE®/
END; [*END OF COMPILATION®/
In order to compile this subroutine PLT,LL FILEA Is entered so that the
address of the entry point, ORDER, will be printed out by the compiler.

Putting the Subroutine into the Library

Immediately after the compilation is complete enter:
CAT

Answer the system’s questions as follows:

ENTER ENTRY POINT NAME ORDER
ADDRESS? 4312

LAST ENTRY POINT? YLS

The entry point name need not be the same as the label on the PROC
statemient as it is here, but it must be the name used when the sub-
routine is called.

In order to verily that the subroutine is in the library, enter: CATLIST
Do not put subroutines which call other library subroutines into the
library.

Calling the Subroutine

Once the subroutine has heen put into the library, as described above,

it can be called even though it is not in the source of the calling program:
CALL ORDER(NA,NB,NC);

The type, precision, and scale of the arguments used in the CALL state-
ment must match the parameters in the subroutine, just as if the sub-
routine were included in the program.

Multiple Entry Points
I a group of subroutines calf cach other, it is more cfficient to compile
and catalog them all at once, so that only one copy of a subroutine
will appear in the compiler output. For example, add an entry point
to the ORDLER subroutine which will handle four numbers:
ORDER: PROC(1,},K);
REDO: [IF {>] TIEN DO; N=1{; I=]; |=N; END;

IF JKKTHEN RETURN;

N=IK; K=]; J=N;

GO TO RIDO;

END;
ORDER4:PROC(NT,N2,N3,N4);

CALL ORDER(NT,N2,N3);

CALL ORDER(N2,N3,N4);

CALL ORDER{N1,N2,N3);

END:

END;
Before putting this subroutine in the library, the old copy of ORDLER
must be taken out:

UNCAT ORDER

The subroutines will be entered into the library as {ollows:
QT/AT YOUR SERVICL. CAT

ENTER ENTRY POINT NAME ORDIER

ADDRIESS?43TA
LAST ENTRY POINT?NO

ENTER ENTRY POINT NAME: ORDER4
ADDRIESS?43AS
LAST ENTRY POINT?YI:S

Line Printer

Printer output can be directed to the line printer instead of the standard
printer by the statement CALLL LPON({1); where the 1 is a dummy para-
meter, required because a library subroutine must have at least one para-
meter to be identified as such. Output will continue 1o be directed 1o

the line printer until the resiart hution is pushed or a CALL LPOFE(1);

Variable File Naimes

A lile name nuay be changed from the keyboard by CALL KEILE(XXX);
all references to the file will be to XXX, (XXX must be declared FILE
before this statement and opened after it.) No references 1o the actual
file nume are made in ithe program since this is not known when the
program is compiled. An example of this usage appears below.

