—

zSBX 20

GPIB Controller Interface
Rev A or B Boards

REORDER PART NUMBER ZT MzSBX 20
September 14, 1989

Ziatech Corporation
3433 Roberto Court
San Luis Obispo, CA 93401
ITT Telex 4992316
FAX (805) 541-5088
Telephone (805) 541-0488

COPYRIGHT 1989 ZIATECH CORPORATION

*MULTIMODULE is a registered trademark of Intel Corporation

I AR R E R EE R E R E R E R R E R R R R R R R R R E R R R R R R E R R R R R R R R R R R R R R R R R R LR R R R R RE R R E R R R EE R E

x

*

* INTRODUCTION *

* * SECTION *

LEEEREREREREEE X]
x % *

I EEEREE R R R R R EEEE R R R R R R R R ERE R R R R R R R R RS R ER R R R R R E R R R LR T

The SBX Bus is a unique interface facilita-
ting on-board 1/O expansion with SBX Mul-
timodule boards. The SBX Bus is driven di-
rectly by the host board, thus becoming an
integral element of a computer's | /O system.
The host board with SBX Bus capability
brings a new concept to |I/O expansion, ena-
bling wusers to tailor their applications
directly at a minimal cost with a savings in
I/O slots. Please refer to Figure 1, SBX
Multimodule Board Concept.

At present, SBX Multimodule boards are
available from numerous manufacturers. Some
twenty different functions are supported.

This manual covers the Ziatech zSBX 20
IEEE 488 (GPIB, HPIB) Multimodule inter-
face board. Both hardware and software de-
scriptions will be covered in addition to an
IEEE 488 tutorial.

zSBX 20 FEATURES

* * % #* *

IEEE 488-1978 Standardized computer /O
Complete controller, talker, and listener capability
Standard peripheral and instrument interface

DMA compatible for performance enhancement
Easily programmed for fast system development

Figure 1.

SBX Mul timodule Board Concept.

AERKREEKRERERER KRR KA RRRRR R AR KRR KRR R AR KRR R R R R AR R R R R R R kR R KRR XK R KR

. * *x SECTION *
* SYSTEM DESCRIPTION x perriele

IR EEEEEEEEEEEEEE R E R R R R AR E R R R R R R R R R R R R R R ER L R R R EE R L L]

The zSBX 20 Multimodule board is a small,
1/O mapped, |IEEE 488 interface board which
plugs into base boards. The SBX board con-
nects to the SBX base board connector via a
standard unique connector designed specifi~
cally for the SBX Bus. The SBX Bus on the
base board is brought out to a female con-
nector, while the SBX Multimodule board
mates with a male connector (Figure 2, zSBX
20 IEEE 488 Multimodule Installation).

The Multimodule board and base board are
both mechanically connected together in two

places. These two points are the SBX con-
nector and a nylon screw/spacer assembly
that are provided. The screw is a 6-32 x 1/4
inch long, and the spacer is a 6-32 threaded
x 1/2 inch long.

The zSBX 20 Multimodule IEEE 488 interface
board is provided with a 14 inch GPIB ribbon
cable. This cable connects to the zSBX 20
Multimodule board and is terminated with an
IEEE 488 GPIB female panel-mount connec—~
tor. Connector jack screws conforming to the
IEEE 488 Standard are also provided.

Figure 2. zSBX 20 |EEE 488 Multimodule Installation,

Ak Ak ok ke ok kK ok ok R K Kk kK ok ke ok ke e ok ok ok ke ok ok ok K ok R ok Kk ok ok kR ko ok ok ok K ok K K K ok ok X K K K K ok ok R K

*

* zSBX 20

*

* * SECTION *

THEORY OF OPERATION * KRR ERRRER KK

x X *

LR R E RS R R EEE R E R R E R R E R E R E R R R R R R R R R R R R E R R R R E R R R E R R R R R A R R

The Ziatech zSBX 20 is a self-contained
IEEE 488 GPIB (General Purpose Interface
Bus) interface for the SBX Bus. It is electri-
cally, physically, and logically compatible
with the SBX Bus. Figure 3 illustrates the
basic zSBX 20 functional diagram.

The SBX Interface supports both DMA and
polling operations by SBX base boards. For
DMA operation, the base board must support
DMA operation by using MDRQT and MDACK
signal lines to transfer data. If DMA is not
supported, polling must be used to transfer
data. Polling operations must be used to
initialize the GPIB section and read the

'GPIB address switch.

The GPIB section provides the protocol to
conform to the IEEE 488 - 1978 Standard.

Complete talker, listener and controller
capabilities are provided. Primary and
secondary address capability is provided.
Interrupts can also be generated on various
GPIB conditions.

The GPIB address switch section provides
access to an 8-position DIP switch. The
GPIB device address is set by 5 switches.
This DIP switch can also be remotely
mounted (for example, on a back panel) by
using Ziatech's ZT 90007 remote DIP switch
cable.

The transceiver section interfaces to the
IEEE 488 lines to provide electrical charac-
teristics conforming to the IEEE 488 - 1978
Standard Specification. Open-collector or
three-state characteristics are available.

GPIB
ADDRESS GP1B TRANSCE | VERS
SWITCH
SBX
INTERFACE / COMNECTOR

Figui~ 3. zSBX 20 Functional Diagram.

AR RA R KRR R R AR AR RN E R RN AR R R LR AR MR R RR AR R R RR AR R RN KRR Rk R R AR E Kk R Rk AR KK
* * * SECTION *
* zSBX 20 APPLICATION EXAMPLES bl ddd

* * % [*
LEREREEEEEEEEESE R R R R R R R E R E R E R R R R EEERE R RN]

EXAMPLE #1, USING THE zSBX 20 TO CONSTRUCT A TEST SYSTEM

OBJECTIVES

* Develop an automated test equipment (ATE) station to inject various stimulus signals
into a unit under test (UUT) in order to measure and record the output results using
the GPIB

* [llustrate message protocol in a (>40kHz) GPIB system configured with the
following:

zSBX 20 GPIB controller (talker, listener, controller)
Signal generator (listener)

Frequency counter (talker, listener)

Plotter (talker, listener)

* [llustrate the zSBX 20 software drivers executed by the 8085 CPU
(Note: 8086 drivers are available also. See Appendix C)

BLOCK DIAGRAM

GPIB

GPIB Controller

(e.g., ZSBX 20)
GPIB #1 <
P4
| 1257 _MHz / /

® o0 D (-

Signal Generator Frequency Counter X = Y Plotter
(eegey HP 3325) (e.gs, DP 3400) (e.gs, TK 1662)
GPIB #2 GPIB #3 GPIB #4

Framus Under Test

zSBX 20 Multimodule Manual

SOFTWARE DESCRIPTION

x

Configure zSBX 20 as system controller by calling the Initialization routine
Put GPIB into Remote

Configure GPIB devices 2 & 3 by addressing each to listen and sending the
appropriate device commands via the Send routine

Start the signal generator and frequency counter via the Send routine

Read the frequency counter reading into the MlJLTIBlJS* system via the
Receive routine

Process and scale reading for output to the plotter
OQOutput plot data to plotter via the Send routine

Repeat all but first two steps for each unit under test

SOFTWARE EXAMPLE

x

®

1.

Assuming an 8080 or 8085 CPU is used to configure the zSBX 20, a call as follows
would be made:

CALL INIT ; Initialize GPIB
CALL INT17 ; Initialize DMA
CALL REME ; Remote Enable

Configure the HP3325A function generator for a sine wave of S5kHz with an
amplitude of 3 Vp-p and an offset of 1.5V:

LX1 H,LSTNL2 ; Load listen list address
LXI D,BUFF2 ; Load buffer address
LXI1 B,BUFFL2 ; Load buffer length
CALL SEND ; Configure HP3325
LSTNL2: DB 22H ; HP3325 listen GPIB addr #2
DB FFH ; Listener list end
BUFF2: DS 'FUIFRSKHAM3VOOF 1. 5VO
Offset
Amplitude
Frequency
Function
BUFFL2: EQU $ -BUFF2 ; Length of message

Configure the Data Precision 3400 DMM with the 3410 GPIB adapter for an AC
measurement on the 10V range using an immediate trigger mode to initialize each
measurement and then request service:

MULTIBUS is a trademark of Intel Corporation

zSBX 20 Application Examples

LX1 H,LSTNL3 ; Load listen list address
LXI D,BUFF3 ; Load buffer address
LXI B,BUFFL3 ; Load buffer length
CALL SEND ; Configure DP3400

LSTNL3: DB 23H ; DP3400 listen GPIB addr #3
DB FFH ; Listener list end

BUFF3: DS 'F2R7TIMS!

L SRQ w/each measurement
immediate trigger
autorange

AC Volts

BUFF3L EQU $-BUFF3

To make a measurement, send execute message:

START: LX1 H,LSTNL3 ; Load listener list
LXI1 D,BUFF7 ; Load buffer address
LXI B,BUFFL7 ; Load buffer length
BUFF7: DS 'E! ; Start reading
BUFFL7 EQU $-BUFF7

To wait for a Service Request (SRQ) from the DMM indicating a completed
measurement, call the Service Requested routine. Note: this could be done with
interrupts if the processor is needed for other things.

LOOP: CALL SRQ ; Wait for SRQ
JZ LOOP

When a service request is pending, do a serial poll and get the response byte:

LXI H, TLKSP ; Serial poll talker list
LXI D,RESP ; SP response byte buffer
CALL SPOL ; Do a serial poll
TLKSP: DB 43H ; DP3400 talker GPIB addr
' DB FFH ; Talker list end
RESP: DS 1 ; Storage for response byte

Check the response byte to see if the DP3400 DMM has a reading:

zSBX 20 Multimodule Manual

LX! H,RESP ; Get address of response

MOV AM ; Get response byte

ANI 40H ; Mask for positive response

1Z OTHER ; If not, do other processing
. ; Yes, needs service

* Get DMM reading:

LX1 H,TLKRL3 ; Load talker list address
LXI D,BUFF4 ; Load buffer address
LX1 B,BUFFL4 ; Load buffer length
CALL RECV ; Get measurement
TLKRL3: DB 43H ; DP3400 talker GPIB addr #3
DB FFH ; Talker list end
BUFF4: DS 4 ; Storage for measurement
BUFF4L EQU $ -BUFF4 ; Length of measurement

* MULTIBUS system now processes and scales data for output to the plotter:

LXI H,BUFF4 ; Get measurement address
MoV AM ; Get data
o ; Process & scale
LXI H,BUFF6 ; Get output address
MoV M,A ; Store data

* Data to be sent to the plotter is output via the Send routine:

LX1 H,LSTNL4 ; Load listener list address
LXI D, BUFF5 ; Load buffer address
LX1 B,BUFF5L ; Load buffer length

LSTNL4: DB 24H ; TEK4662 listener GPIB addr
DB FFH ; Talker list end

BUFFS5: DB 'sp!

.[1;——————————-print ASCII string

alpha mode print

BUFF6: DS 4
BUFF 5L EQU $-BUFF 5

; Storage for measurement

* To get another reading, jump back to START to initiate another measurement:

JMP START

10

zSBX 20 Application Examples

OTHER CONSIDERATIONS

This example could be made more efficient by increasing the buffer size for the
plotter before printing, thus decreasing the addressing overhead. Note also that
the majority of GPIB systems will use the service request line to determine the status
of the GPIB devices and subsequently service them. The CPU idle time could be
reduced by interrupting upon SRQ instead of polling.

To facilitate efficient GPIB debugging a GPIB analyzer would be useful. One such
analyzer is manufactured by Ziatech (ZT 488), allowing bus monitoring while
stepping through bus transactions one at a time. When utilized in the above system,
the analyzer is used to break apart the system, isolating each component for
operational verification. For example, the sequence used to initialize the function
generator could be sent by the analyzer to check for proper operation. As an
aiternative, the analyzer could be connected to the output of the zSBX 20 to verify
proper programming. When each component is verified with the analyzer, all
components can now be connected together with the analyzer included to verify
proper system operation. Whether the analyzer is used as a device or controller,
the unit usually pays for itself during the first week of debugging a GPIB system.

ZT 488 GPIB Analyzer with Operator's Manual
and 115V AC Power Supply.

11

zSBX 20 Mulitimodule Manual

EXAMPLE #2,

OBJECTIVES

USING THE zSBX 20 AS A FRONT-END PROCESSOR

* Develop a high speed (<250kHz) computer-to-computer GPIB communications in a
system utilizing front—end processors

* |llustrate message protocol in the GPIB system configured with the following:

- GPIB Controller (talker, listener, controller)
- 2zSBX 20 GPIB Device (talker, listener)
- zSBX 20 GPIB Device (talker, listener)

* |llustrate the zSBX 20 software drivers executed by the 8085 CPU's

BLOCK DIAGRAM

HP 1000

High Speed GPIB Controller

12

(master computer)
GPIB #1

G -

zSBX 20

71

High Speed GPIB Device
(front-end processor)
(GPIB #2)

5
A

zSBX 20

High Speed GPIB Device
(front-end processor)
(GPIB #3)

zSBX 20 Application Examples

OTHER CONSIDERATIONS

The GPIB provides an easy extension to more than 2 front-end processors. The limit
will be determined by the quantity of data to be transferred and the required number
of transactions per second. The GPIB places an upper limit of 15 devices in the
system.

The front-end processors used in this example must be local to the mainframe
because the GPIB has a length restriction of less than 2 meters per device. For
small numbers of devices as shown here, the bus may be preloaded with equivalent
loads to simulate 10 devices, allowing the GPIB maximum length of 20 meters.

For high-speed communications, the GPIB is faster than most RS-232C links.
The GPIB makes a good system—independent communication protocol for high~speed,
local systems. Most mini-—computers and many mainframe computers have GPIB

controllers and there are over 1000 GPIB compatible instruments available today for
system use.

13

ZzSBX 20 Multimodule Manual

EXAMPLE #3, USING THE zSBX 20 WITH

OBJECTIVES

IBM PC BASIC

* Develop an automated test equipment (ATE) station to inject various stimulus signals
into a unit under test (UUT) in order to measure and record the output results using

the GPIB

* |llustrate message protocol in a
following:

Signal generator (listener)

Plotter (talker, listener)

zSBX 20 GPIB controller (talker, listener, controller)

Frequency counter (talker, listener)

* lllustrate the zSBX 20 with the IBM PC.
(Note: 8086 drivers are available also. See Appendix C)

BLOCK DIAGRAM

(>40kHz) GPIB system configured with the

G P

u

GPIB Controller
(e.gs, zSBX 20)
GPIB #1

o [
©@ -0
Signal Generator

(e.ge, HP 3325)
GPIB #2

| 1257 MHz

<

N

o o o o
.o o
° o o

/

L

7

Frequency Counter
(e.gs, DP 3400)
GPIB #3

Framus Under Test

14

X - Y Plotter
(e.g., TK 1662)
GPIB #4

zSBX 20 Application Examples

SOFTWARE DESCRIPTION

*

Configure zSBX 20 as system controller by calling the Initialization routine
Put GPIB into Remote

Configure GPIB devices 2 & 3 by addressing each to listen and sending the
appropriate device commands via the Send routine

Start the signal generator and frequency counter via the Send routine

Read the frequency counter reading into the IBM PC system via the Receive routine
Process and scale reading for output to the plotter

Output plot data to plotter via the Send routine

Repeat all but first two steps for each unit under test

SOFTWARE EXAMPLE

*

*x

®

Assuming an IBM Personal Computer is used to configure the zSBX 20, a call as
follows would be made:

100 CALL INIT ' Initialize GPIB

Configure the HP3325A function generator for a sine wave of 5kHz with an
amplitude of 3 Vp-p and an offset of 1.5V:

110 FGEN$ = n2 1 ' HP3325 GPIB addr #2
120 CONF IG$ = "FUIFRSKHAM3VOOF1.5VO"

———— Offset

Amplitude
Frequency
Function

130 CALL SENDS (FGEN$,CONFIGS$)

Configure the Data Precision 3400 DMM with the 3410 GPIB adapter for an AC
measurement on the 10V range using an immediate trigger mode to initialize each
measurement and then request service: ’

140 Dvvg = "3 1 ' DP 3400 GPIB addr #3
150 CONF IG$ = "F2R7TIMS"

SRQ w/each measurement
‘mediate trigger
autorange

AC Volts

160 CALL SENDS (DVM$,CONF IGS$)

15

ZzSBX 20 Multimodule Manual
* To make a measurement, send execute message:

170 EXE$ = "E"
180 CALL SENDS (DWM$,EXE$)

* To wait for a Service Request (SRQ) from the DMM indicating a completed
measurement, call the Service Requested routine.

190 CALL SRQD (SERVICE%) ' Wait for SRQ
200 IF SERVICE%<>0 THEN GOTO 205
ELSE GOTO 190

* When a service request is pending, do a serial poll and get the response byte:
205 STATUSS SPACE$ (1)

210 DEVICE$ = SPACE$ (3)
215 CALL SPL (DWM$,STATUSS$,DEVICES)

* Check the response byte to see if the DP3400 DMM has a reading:

220 IF VAL (STATUSS)AND (40) THEN GOTO 225
ELSE GOTO ?

* Get DMM reading:

225 DATUM$ = SPACE$ (20)
230 CALL RECVS (DWM$,DATUMS)

* |IBM PC now processes and scales data for output to the plotter:

* Data to be sent to the plotter is output via the Send routine:

240 PLTR$ = "4 " ' TEK4662 GPIB ADDR
250 CALL SENDS (PLTR$,GRAPHS)

* To get another reading, jump back to initiate another measurement:

260 GOTO 180

999 END

16

EEEEREE R R EEEE R ER R R EE R E R EE R R R R R R R R R E R R R R E R AN E R R EEEE R R

®

* zSBX 20

»

GPIB

HARDWARE

* * SECTION *
DESCRIPTION X EEEEERRE KKK
x

* \" *

I EEEEEEEEEER S AR R R R R E R RS R R EE SRR E IR R R EERE E R E T

INTRODUCTION TO THE GPIB
CAPABILITIES OF THE zSBX 20

The |EEE 488 Bus (GPIB) is truly a universal
interface. Regardless of the device being in-
terfaced, its function or purpose, all devices
on the bus look and act the same. The Three-
World Interface shown in Figure 4, demon-
strates how three completely foreign worlds:
the world of mivcro'computers, the world of
instrumentation, and the world of industrial
1/0, can all operate together as a single
system via a few basic functionse.

A GPIB device can only perform three basic
functions or subsets of functions. A GPIB
device can either talk (send data), listen
(receive data), or control (i.e.,, determine
who talks or listens). This is a simplified
summary of GPIB activity.

In Figure 4, for example, say that Device 2
wants to talk to Device 3, and assume that
Device 1 is the controller. What Device 2
wants to "say" is totally irrelevant to GPIB
activity. The "conversation" could be, for
example, the latest position readings of a
work piece being cut by a robotic milling

machine. Device 3 may need the position
reading to adjust a set of servo motors to
move the work piece to a new position. How
does this "conversation" take place?

When Device 2 needs to talk, it can attract
the "attention" of the controller, Device 1,
by asserting a dedicated service line called
"Service Request” (SRQ). When the con-
troller senses SRQ, it knows that one or more
of the other devices on the GPIB requested
some kind of assistance or "service". The
controller can easily determine which device
requested service and the type of service
requested, if any, by performing one of
several "polling" techniques.

GPIB polling will be discussed later, but for
now, assume that the controller knows that
Device 2 must talk to Device 3 and Device 3
must listen to Device 2. Before devices can
communicate with each other, they first must
be "introduced" by the controller.

The controller can start the introduction by
"addressing™ Device 2 to talk. How does the
controller do this? All devices will give their
undivided "attention" to the controller when
the controller is asserting its "Attention"

IEEE 488 BUS

1L

aliill

\maansaxsennng

)

</

MICROCOMPUTERS
DEVICE 1

Figure 4,

INSTRUMENTAT ION
DEVICE 2

INDUSTRIAL [/O
DEVICE 3

Three-World Interface.

19

zSBX 20 Multimodule Manual

(ATN) line, so when Device 2 sees his own
private talk address accompanied with ATN,
it knows that its turn to give a "speech' is
coming up next.

The controller can remove any possible un-
invited listeners or "eavesdroppers" from
the bus by sending the Universal Unlisten
(UNL) message, accompanied with ATN,
When UNL is sent by the controller, all
listeners become inactive. '

The controller can selectively invite lis—
teners, in this case only Device 3, by sending
listen addresses to the GPIB. When Device 3
"sees" its unique listen address asserted on
the GPIB with ATN, it knows it soon must
listen to all conversations.

Assume that the controller addressed Device
2 to talk and Device 3 to listen. The conver—
sation begins as soon as the controller re~
linquishes control of the GPIB by removing
the ATN signal. This tells all devices parti-
cipating in the conversation that they may
now give their "attention" to each other.

There are several ways to terminate a "con-
versation” or data transfer. In all cases, the
talker should inform the listener(s) that the
transfer is complete. To accomplish this, the
GPIB has a dedicated line called End-Or-
Identify (EOI). When Device 2 is sending the
last word, it can assert the EOI line, in=-
dicating "End". This is good system design,
giving Device 3 or any other listeners, the
opportunity to accept the last byte and
immediately begin to process the received
data.)

If the system does not use EOIl as an end
indicator, the talkers and listeners should be
pre-programmed to transfer either a pre-
arranged string length, or agree on a stan-
dardized "End-Of-String" (EOS) character.
The EOS character can be anything the sys~
tem designer chooses. Some systems employ
an ASCII Carriage Return or Line Feed
character. The EOS character may even
change dynamically so long as the system is
designed to inform all devices of the change.

If Device 2 is finished talking, the controller
can take control of the GPIB again by asser-
ting ATN. The controller could take control
before Device 2 is finished talking and stop

20

the transfer between words, or even in the
middle of a word (destroying the word);
however, this is not good system practice.
The controller should only take control in
the middle of a transfer, in the event of a
serious system failure.

When the controller takes charge again, it
could set up another conversation with pos—
sibly another talker and another set of lis-
teners. The controller could even partici-
pate in the conversation by specifying itself
as the talker or one of the listeners. The
previous talker is usually "untallked", that
is, unaddressed by a universal untalk (UNT)
or is automatically disabled as talker when
another talker other than itself is specified
or addressed to talk.

When a device requests service from the
controller via the SRQ line, the controller
must find out which device or devices re-
quested service, and what kind of service is
needed. If the GPIB Serial Poll (SPOL) meth-
od is used, the controller responds to the
SRQ much like a busy traffic control cop
could respond to a tap on the shoulder. The
traffic controller would finish conducting
the traffic through the intersection and then
stop the traffic temporarily. The controller:
would then interrogate the device that re—
quested service to determine the priority of
the service. If it is not "rush hour" the
service could be performed immediately, or if
the service is a higher priority than the
current traffic situation, this would also
warrant immediate attention. If there is more
than one device on the GPIB capable of
requesting service, the controller can se-
quentially or "serially" poll each device for
interrogation.

A controller begins a serial poll by sending
the Serial Poll Enable (SPE) message to the
GPIB, with ATN asserted. All devices will
then expect to be eventually polled. To poll
a device, the controller addresses that
device to talk. When the controller releases
ATN the polled device responds by putting a
"Serial Poll Response Byte" on the GPIB.
The polled device gets only one 'vote!:
"yes™, | did assert SRQ, or "no", | did not.

The vote or "response™ bit has been assigned
by the GPIB standard to be bit number 7, and
it is asserted true if the polled device re-

quested service. The remaining seven bits
can contain status information, such as the
type of service needed, if any. The remaining
status is optional and is left open for the
system designer to decide on. When all de-
vices have been polled, the controller sends
the Serial Poll Disable (SPD) messsage, tell-
ing all devices that the serial poll process is
complete.

There is another method of polling called
parallel poll. Rather than using bit 7 to
indicate an affirmative service requirement,
each device on the GPIB has a dedicated da-
ta line to assert when polled. With parallel
poll, the controller polls all devices at once
in "parallel" fashion rather than serially.
The polled devices respond by driving their
dedicated response line true if service is
required, false if not.

zSBX 20 GPIB Hardware Description

In the simplest form of parallel poll, the
controller asserts the EOI line with ATN,
telling all devices to "identify" by driving
their pre-assigned parallel poll response
line. There are more ramifications of the
parallel poll technique that will not be
discussed here. Let it suffice to say that
parallel poll is a powerful polling technique
that requires careful system design.

THE GPIB ADAPTER
(TMS 9914A)

The zSBX 20 implements the full IEEE 488
bus (GPIB) interface using the Texas I[n-—
strument TMS 9914A GPIB adapter. A block
diagram of the TMS 9914A is given in Figure
Se It is used to interface between the IEEE
488 - 1978 General Purpose Interface Bus

ADDRESS
STATUS

—

INT STATUS 0 MASK 0 INTERRUPT
INT STATUS 1 MASK 1 LOGIC
: i GPIB
MANAGEMENT
A
BUS A LINES

(ATN, DAV, NRFD,

STATUS \N—

L4
NDAC, IFC, REN,
SRQ, EOI)

AUXILIARY
COMMAND

AUX
CcMD
DECODE

MPU
DATA
LINES

(D0-D7

ADDRESS

COMPARE
LOGIC

PARALLEL
POLL

DATA IN
DATA QUT

COMMAND | ,

SERIAL POLL A__l

488
STATE
DIAGRAM
AND
CONTROL
LOGIC
ro—
4
MULTILINE
MESSAGE
DECODE

GPIB

PASS

DATA
LINES

THROUGH |

RSO

REGISTER

RS ADDRESS
RS2 DECODE

CE

<

(D101 - DIO8)

Figure 5. TMS 9914A Block Diagram.

21

zSBX 20 Multimodule Manual

(GPIB) and the off-board CPU. The TMS
9914A interfaces with the GPIB via IEEE
488 transceivers. The TMS 9914A is mapped
into the CPU I/O system. The TMS 9914A has
13 accessible registers, seven write and six
read. All communication between the GPIB
and the microprocessor is carried out via
these registerse A summary of each register
appears in Figure 6.

1 /O PORT I /O READ 1 /0 WRITE
ADDR, BASE+ REGISTER REGISTER
OH INT STATUS 0 INT MASK 0
1H INT STATUS 1 INT MASK 1
2H ADD STATUS -
3H BUS STATUS AUX CQMD
4H ADD SWITCH ADD REG
S5H — SER POLL
6H MD PASS THR PAR POLL
H DATA IN DATA OUT
Figure 6. 1/O Port Descriptions

For The TMS 9914A.,

ADDRESS REGISTER (BASE+4H, W)
TALKER/LISTENER

The Address Register (ADDR) is a write=
only register at base+4H that is written
when the zSBX 20 is used as a GP!IB Talk-
er/Listener and not a controller. The Ad-
dress Register engages three major functions
of the zSBX 20 as a GPIB Talker/Listener.
The following three paragraphs describe
these three functions. Consult the TMS
9914A Address Register figure for refer-
ence.

Ledpl[dalldzt[\Ail m| a3l a2 []

]

L GPIB PRIMARY ADDRESS

—DISABLE TALKER FUNCTION

DISABLE L!ISTENER FUNCTION

— ENABLE DUAL PRIMARY ADDRESS MODE

Figure 7. TMS 9914A Address Register,

Every GPIB device requires a five bit ad-
dress, A5-A1, to distinguish it from other
GPIB devices. The Address Register bits A5-

22

Al, when written to, establishes the zSBX
20 five bit GPIB address. The user is advised
to get the address by reading the on-board
DIP switch at the Address Switch Register,
also at port base+4H (see Address Switch

Register description below). The address
11111B is not allowed by the IEEE 488
Standard.

The disable-talker (dat) and disable-listener
(dal) bits configure the zSBX 20 to be either
a GPIB talker or a GPIB listener or both. The
dat and dal enable the talker/listener func-
tions in an inverse order, so the user has to
think in "reverse" to understand these func-~
tions. To enable the zSBX 20 as a GPIB talk-
er, the listener function must be disabled by
writing a one to the dal bit. The GPIB listen-
er function is enabled by disabling the talker
function by writing a one to the dat bit. To
make the zSBX 20 both a GPIB talker and
listener, neither feature can be disabled;
rather, write zeros to bits dat and dal, thus
enabling both the GPIB talker and listener,

Some users require the zSBX 20 to have dual
GPIB addresses for the same board. This
useful feature enables the system designer to
"partition" the zSBX 20 into two separate
devices on the same board. A prime example
is when the zSBX 20 is programmed to mea-—
sure temperature and pressure in an indus-
trial processing plant. One GPIB address
pertains to a temperature measurement, the
other to a pressure measurement. Writing a
one to the enable~dual-primary-addressing
(edpa) bit makes the zSBX 20 ignore GPIB
address bit A1, giving the board two conse-
cutive GPIB primary addresses. Thisis not to
be confused with GPIB primary-secondary
addressing which will be described later. The
Upper-Lower-Primary—-Address (ULPA) bit
in the Address Status Register (discussed in
detail later) tells the user which of the dual
primary addresses was sent by the controller.
The ULPA bit is actually an image of the
missing GPIB address bit A1l ignored in the
edpa mode.

Note to the user: some system designers will
want to build a system that uses a separate
GPIB talker and listener at the same GPIB
address. The 2zSBX 20 could be programmed
to function in this manner but Zjatech re-
commends that you avoid this mode of oper-
ation for two reasons: (1) non-unique GPIB

addresses in the same system are very con-
fusing and (2) the interrupt registers cannot
differentiate between a talker or listener
being addressed (see the discussion on TMS
9914A interrupt registers later).

The System Reset signal (RESET), generated
by the CPU, resets the Address Register
such that the zSBX 20 is a single GPIB
talker/listener with an address of O.
Therefore, the wuser's initilization must
enable the GPIB talker and listener, and
simuitaneously write the GPIB address A5-
Al. This can be accomplished in the
following manner:

(1) Select the GPIB address using the five
least significant bits of the on-board DIP
switche

(2) Read the DIP switch via the Address
Switch Register at port base+4H.

(3) Mask out the remaining three bits by
ANDing the DIP switch value with TF H (this
bit pattern also enables talker/listener and
single primary addressing).

(4) Write the masked address to the Address
Register at pori base+4H.

(5) The zSBX 20 will then be enabled for a
single GPIB primary talker/listener address
of A5-A1.

(6) You may skip steps 1-5 and write out the
correct pattern to the Address Register for
your particular system.

Note that the Address Register is not
cleared by a hardware or software reset.

The TMS 9914A as a controller talks and lis-
tens through use of ton and lon Auxiliary
Commands and is not addressed as described
above.

ADDRESS SWITCH REGISTER
(PORT 34H, R) - GENERAL PURPOSE

The Address Switch Register is actually a
read-only port (base+4H) that reads the
contents of the on-board DIP switch at pack
position 3A. See the schematic for further
reference. The contents of the Address
Switch Register, that is, the DIP switch

zSBX 20 GPIB Hardware Description

setting, is normally written to the Address
Register (see the Address Register discus—
sion above) to enable the GPIB talk-
er/listener address. The DIP switch may,
however, be used to indicate anything the
system designer finds convenient. The TMS
9914A Address Switch Register figure gives
the wuser a useful suggestion on how to
implement the DIP switche. This is how the
zSBX 20 defines the DIP switch.

D7 D6 | D5 D4 (D3 | D2 |[D1 | DO

SW8 | SW7|SW6 [SW5|Sw4 |SW3 |SW2 | SW1

S.C. User GPIB
Defined Address
Figure 8. TMS 9914A Address Switch

Register.

As expected, switch positions SW5-SW1
represent the five bit GPIB addresses. The
switch positions SW7-SW6 on the zSBX 20 are
user defined for one of four possible

‘ operations. The switch position SW8, when off,

enables the zSBX 20 as the system controller.
When SW8 is on, REN and IFC cannot be
asserted. The DIP switch closures are inverted
twice so that the "on" or "closed" position of a
switch represents a binary 1. See the zSBX 20
schematic for details.

The zSBX 20 is shipped from the factory with
the DIP switch set up for the zSBX 20 as
system controller, shown in Figure 8 above.
The GPIB address is four, the user defined
DIP switches are set for zero. The Address
Switch Register will read: 04H or
00000100B. The drivers are enabled for
three-state operation.

ADDRESS STATUS REGISTER
(BASE+2H, R) - TALKER/LISTENER

The Address Status Register (ADRST) is a
read-only port at base+2H that is only read
when the zSBX 20 is used as a GPIB talk-
er/listener. The Address Status Register
contains the GPIB address status of the

23

ZSBX 20 Multimodule Manual

zSBX 20 which is determined by the current
GPIB controller-in~charge. The address sta-
tus is not "latched", that is, it is valid only
at the time of reading. This implies that the
GPIB controller may change the address sta-
tus any time during or after reading; there-
fore, the system designer should carefully
study the normal logical protocol of the
GPIB, to anticipate any change in address
status. Consult the TMS 9914A Address Sta-
tus Register figure for details.

[Rem [LLo [AT [Lpas| Tpas {Laps | Tans [uLra |

L UP /LOW ADDRESS

TALKER ADDRESSED

L— LISTENER ADDRESSED

“TALKER PRIMARY ADDRESSED

LLISTENER PRIMARY ADDRESSED

ATTENTION ASSERTED BY CONTROLLER

LOCAL LOCKOUT

REMOTE STATE

TMS 9914A Address Status
Register.

Figure 9.

The ULPA bit is used to detect upper or
lower dual primary GPIB addresses. Dual
primary addressing was discussed in the
Address Register section earlier. Please
read that subsection before proceeding. The
only difference between dual primary ad-
dresses is the state of the least significant
address bit A1 during addressing. If A1 was
low, then the valid ~address was the lower
address and ULPA is cleared. If A1 was high,
then the higher address was valid and ULPA
is sete

The ULPA bit feature is active regardless if
dual primary addressing was selected or not.
Once the ULPA bit is set, it can only be
cleared by a valid zSBX 20 address with Al
equal to zero, the Interface Clear (IFC)
signal on the GPIB, or by removing power.
Remember, the ULPA bit only pertains to the
last valid zSBX 20 GPIB address sent by the
controller. Dual primary addressing should

24

not be confused with secondary addressing
which will be discussed later.

The Talker or Listener Primary Addressed
State (TPAS or LPAS) bits tell the user that
the zSBX 20 GPIB primary talk or listen
address has been sent by the controller, and
that the GPIB hardware has acknowledged
that fact by settling into the talker or
listener primary addressed "state". The
reader should consult the |[EEE 488 Standard
for the state diagrams.

The TPAS and LPAS bits are used when a
secondary address is required to form a
"complete" address. In normal primary
addressing mode, a single five bit GPIB
address differentiates between thirty-two
possible GPIB addresses. Some systems re-
quire the user to implement more than thirty-
two device addresses; thatis, a device with=
in a device or a function within a device
needs to be specified. This is typical of
multiprocessor systems where many subrou-
tines need to be specified via a second or
"secondary" address. Therefore, the TPAS
and LPAS tell the user that only the primary
address has been received though a second-
ary address may be required.

The IEEE 488 Standard limits the total num-
ber of devices on the bus to sixteen, includ-
ing the controller. This is a bus loading
limitation and not a logical one.

The Talker or Listener Addressed State
(TADS or LADS) bits tell the user that the
zSBX 20 has been fully addressed by the
GPIB controller. If primary addressing only
is used, then TADS and TPAS or LADS and
LPAS occur at the same time, thatis, a single
zZzSBX 20 primary address sent by the GPIB
controller completes the addressing state.

If secondary addressing is employed, TADS
or LADS tell the user that both primary and
secondary address have been received by the
zSBX 20. Secondary addressing will be dis-
cussed in further detail later.

The TADS or LADS bits do not necessarily
mean that the zSBX 20 is ready to talk or
listen yet. In order for the zSBX 20 to talk
or listen over the GPIB, the Byte-In (Bl) and
Byte-Out (BO) bits in the Interrupt Status 0
Register must be closely monitored. See the

Interrupt Status

details.

0 Register (INTO) for

The Attention (ATN) bit indicates the level
of the GPIB Attentionline. Attention is only
asserted by the GPIB controller currrently in
charge. When data is present on the GPIB
data bus and Attention is asserted, the data
is actually a GPIB bus message such as a talk
or listen address. When data is present with-
out Attention, then it is simply data. Ad-
vanced GPIB system designers often need to
know the level of the Attention line in order
to determine the current GPIB state of a
device.

The Local Lockout (LLO) bit indicates that
the Local Lockout message has been re-
ceived by the zSBX 20. LLO is a message
sent by the GPIB controller to tell the
talker/listeners to ignore their front panel
controls (if any). This is useful in a system
where you need to protect against an acci-
dental switch closure at a control panel or
against an inexperienced operator.

The Remote Enable (REM) bit tells the user
that the Remote Enable (REN) line on the
GPIB has been asserted by the controller and
that the zSBX 20 is in the Remote Enable
State. The REN line lets a talker/listener
know, in this case the zSBX 20, that it is
"enabled" to be "remotely" programmed by
the controller. Some devices ignore the REN
line, that is, they accept control any time
from a controller.

The REM bit has another subtle function.
Power up time for some systems presents
many problems that are not incurred during
normal operation. The system controller
should power-up, initialize, pulse Interface
Clear (IFC), and assert REN. The zSBX 20
can then detect REN via the REM bit. REN
tells the zSBX 20 that the controller has
powered up successfully and is ready to
control the GPIB. The zSBX 20 talker/lis—-
tener can then safely proceed.

BUS STATUS REGISTER (BASE+3H, R)
DEBUGGING

This read only, non-latched register is used
to obtain the status of the IEEE 488 bus
management lines. The Bus Status Register
(BUSTR) is not normally used in a system. Its

zSBX 20 GPIB Hardware Description

main purpose would be used in debugging the
GPIB should a catastrophic failure occur. All
eight lines of the GPIB control lines can be
monitored. The bits are positive true logic
values of the GPIB management lines. Please
note that this information is obtained from
the internal logic of the TMS 9914A and no
mechanism is provided to prevent status bits
from changing during a read cycle.

[arv | av [noac|eeD] €01 | sro | iFC | ReN |

REMOTE ENABLE
——INTERFACE CLEAR
————SERVICE REQUEST
END-OR-IDENTIFY

NOT-READY-FOR-DATA

NOT DATA ACCEPTED

DATA VALID
ATTENT ION
Figure 10, TMS 9914A Bus Status

Register.

If the zSBX 20 is configured as the System
Controller and is sending IFC, then the IFC
bit in this register is not set.

COMMAND PASS-THROUGH REGISTER
(BASE+6H, R) -~ TALKER/LISTENER

This read only port is the Command Pass-
Through Register (CPTRG). It monitors the
GPIB data lines similarly to the way the Bus
Status Register monitors the GPIB control
lines. It is a non-latched unqualified image
of the GPIB data lines that may be read any
time. This register is normally used when the
zSBX 20 is a talker/listener, to read secon—
dary addresses, unrecognized commands, and
secondary commands.

The register contents are not latched,
therefore the user must suppress the hand-
shake, thus forcing the data to be kept
stable long enough to read the address or
command and then respond correctly. The
user must then complete the handshake,
allowing new data on the bus.

Handshake manipulation is controlled by the
Auxiliary Command Register discussed later.

25

zSBX 20 Mulitimodule Manual

Handshake suppression is also affected by
the Address Pass-Through bit in the Inter-
rupt Mask 0 Register also discussed later.

Although the IEEE 488 Standard does not
permit users to define their own commands,
provisions for upgrades of the standard are
provided by using the Command Pass-Through
Register. Thus, the number of possible avail-
able commands for future IEEE definition is
increased. An interrupt can be generated to
prompt the CPU to read the Command Pass—
Through Register. See the discussions on the
interrupt registers.

When the zSBX 20 is the GPIB Controller,
this register is also used to obtain the paral-
lel poll status bits, when conducting a paral-
lel polls For details, refer to the section on
the Parallel Poll Register.

PARALLEL POLL REGISTER
(BASE+6H, W) - TALKER/LISTENER

The Parallel Poll Register (PRPR) is only
used when the zSBX 20 is a GPIB talker/lis—
tener. The parallel poll feature is used when
the GPIB controller needs to simultaneously
check the request-for-service status of up
to eight talker/listeners at the same time.
Each of the eight devices will have a dedi-
cated GPIB data line to drive when parallel-
polled by the controllers When the zSBX 20
needs to get the attention of the GPIB con-
troller, and the parallel poll feature is being
used, the zSBX 20 must save its own user—
defined internal status indicating a request
for services When the controller routinely
performs a parallel poll, the zSBX 20 must
place a "yes" or "no" status bit on its own
dedicated GPIB data line. The following text
will discuss the mechanism for doing this.
Note to the reader: Most systems use the
Serial Poll feature rather than Paraliel Poll;
Serial Poll is easier to implement, so it is
highly recommended that the user implements
Serial Poll rather than Parallel Poll.

D108| D107| D106 [D105|{D104 [D103| D102| D10
PP8 | PP7 [PP6 | PPS| PP4 | PP3 | PP2 | PP1

TMS 9914A Parallel Poll
Register.

Figure 11.

26

Whenever the Attention (ATN) and the End-
Or-ldentify (EOI) line on the GPIB are
asserted together by the controller, the
contents of the zSBX 20 Parallel Poll
Register are asserted on the GPIB data bus.
A hardware reset clears the the Parallel Poll
Register. A software reset (see the Auxili-
ary Command Register) must be executed be-
fore writing to the Parallel Poll Register.

Obviously, anything can be written to the
Parallel Poll Register, but to give each de-
vice a dedicated GPIB data line to request
service from, only one bit of the parallel poll
response byte may be "active" at a time. This
means that if the system is using a positive
"sense" bit to indicate service requested,
the byte written to the Parallel Poll Register
must consist of one bit high with the remain-
ing seven bits low. If negative sense is used,
then the compliment byte must be written,
that is, one bit low and seven bits high. This
is the normal PP mode due to the electrical
nature of open collector drives with passive
pull-ups.

If there are more than eight devices on the
GPIB and the systemrequires parallel polling
from each device, devices may share one of
the eight GPIB data lines. The system de-
signer must then implement a way to deter-
mine which instrument(s) sharing a data line
truely requested service. The controller can
sequentially interrogate each device or set
up another parallel .poll subsystem where
previously polled devices do not participate
in the poll.

The IEEE 488 Standard calls out two subsets
of parallel poll capability: an "easy" one and
a "not-so-easy" one. These are Paralle! Poll
Two (PP2) and Parallel Poll One (PP1) re-
spectively.

Parallel Poll Subset PP2

Protocol for PP2 can be simple. With.PP2, the
GP!B controller can conduct a parallel poll
by simply asserting End-Or-ldentify (EOI -
we are using the "Identify" portion now)
while the Attention (ATM) line is asserted;
that is, while the controller is actively in
charge. Each GPIB device participating in
the parallel poll must, within 200 micro-
seconds, send its parallel poll response bit to
the GPIB data bus. The controller can then

read all the response bits as one data byte
and then take appropriate action.

The frequency of polling is determined solely
by the GPIB controller. The controller must
poll often for busy systems because the talk—-
er/listeners do not have any direct means to
attract the attention or interrupt the con-
troller, when using parallel poll. The
controller must poll frequently to keep close
tabs on the system. This is a main consider—
ation when deciding between using parallel
versus serial polling.

With serial poll designs, any device may in-
terrupt the controller by asserting the Ser-
vice Request (SRQ) line on the GPIB. The
controller could then "serially" interrogate
each device for a serial response byte that
describes not only if the device needs ser—
vice or not, but can also indicate the type of
service required with the remaining seven
bits. See the Serial Poll Register.

Obviously, "configuring" or getting ready
for a parallel poll requires a lot of system
considerations. Each device must know what
GPIB data line to drive during a parallel poll.

When using the PP2 subset, the initialization
routine of the zSBX 20 must write the cor-
rect response byte to the Parallel Poll Reg-
ister, setting the assigned bit if using posi~-
tive sense or resetting the assigned bit if
negative sense is used. All other bits must be
complements of the assigned response bit.

Note to the reader: Most systems that use
Parallel Poll use PP2,

Parallel Poll Subset PP1

The system designer can build a system
where the GPIB controller tells each device
how to configure its response byte. The PP1
subset was defined for this purpose.

The four least significant bits of the Parallel
Poll Enable (PPE) message are designated S,
P1, P2, P3. The Sense (S) bit, corresponding
to the fourth GPIB data line, tells the device
which polarity the parallel poll response bit
must be to be true, that is, an affirmative
response. The binary-weighted bits P1, P2,
P3, tell the device which GPIB data line to
use for the response bit. The remaining four

zSBX 20 GPIB Hardware Description

bits not shown, in conjunction with S, P1, P2,
P3, make up the PPE message.

When the zSBX 20, as a talker/listener, re-
ceives the SPE message, the software must
read the message via the Command Pass-
Through Register, interpret the S, P1, P2,
and P3 information and store the assigned
parallel poll response byte in memory some-—
where. Up to this point, zero'!s should have
been written in the Parallel Poll Register to
avoid confusion.

The suggested protocol for implementing
PP1 parallel polling where the zSBX 20 is a
talker/listener is as follows:

(1) After power-up and software reset,
write 00 to the Parallel Poll Register.

(2) The GPIB controller will address the
zSBX 20 to listen.

(3) The controller will send the Parallel
Poll Configure (PPC) message. The zSBX 20
will read the command via the Command-
Pass=Through Register and then get ready
for the PPE message.

(4) The controller will send the "custom-
ized" PPE message for the zSBX 20. The
zSBX 20 will read the PPE message via the
Command Pass-Through Register again,
interpret the S, P1, P2 and P3 information,
and store the byte for further use.

(5) The zSBX 20 will then be set up for PP1
parallel polling. If the 2zSBX 20 needs
service from the controller, an "affirmative"
response byte will be written to the Parallel
Poil Register, otherwise the "negative" byte
is written.

(6) Whenever the controller requests a
parallel poll response byte, the ATN and EOI
lines are asserted by the controller. The
"yes™ or "no" response in the zSBX 20 Parai-
lel Poll Register is automatically placed on
the GPIB data bus.

(7) If or when the controller re—addresses
the zSBX 20 to listen and sends the Parallel
Poll Disable (PPD) message, the zSBX 20
must not write an affirmative response byte
into the Parallel Poll Register until the zSBX
20 isre—enabled by the controller by repeat-

27

zSBX 20 Multimodule Manual

ing steps (3) through (4). This feature allows
several devices to share a parallel poll
response line by disabling the devices that
are known not to need service and enabling
the devices in question.

(8) If or when the controller sends the
Parallel Poll Unconfigure (PPU) message, the
zZSBX 20 may interpret this message to imply
that no more parallel poll activity will be
taking place until the re-configure (PPC)
message gets sent again by the controller.

Parallel Poll versus Serial Poll

A Parallel Poll service request differs from
the Serial Poll service request in these ways:

(1) A device using the parallel poll facility
should be assigned its own dedicated bus line
to send its request, whereas devices using
the serial poll facility (i.e., SRQ) must be
addressed individually to send an identifying
service request byte. Parallel Poll saves the
talk addressing time and can identify up to
eight devices at once.

(2) Devices using the serial poll facility
(SRQ) can request service from the control-
ler any time a device requires service,
whereas service requests sent via the paral-
lel poll facility can only be sent when soli-
cited by the current controller. Thus, if
speed in servicing requests is of great impor-
tance and there is little GPIB bus activity
between requests (permitting frequent par-
allel polls by the controller) servicing of
requests should be done by the parallel poll
methods. By far, however, the serial poll
method is the easiest to use and is applicable
for the majority of GPIB systems.

(3) The serial poll mechanism implicitly
tells the device that its request has been
seen by the controller and it may stop
asserting SRQ. Parallel Poll has no equiva-
lent mechanism and the system software in
both the device and the controller must ex—~
plicitly set up some convention to inform the
device that its parallel poll response has
been recognized.

Keep in mind that protocol for the IEEE 488
Bus has not been defined, that is, it is left up
to the designer. Bus messages, and the effect
thereof, on GPIB devices, have been defined

28

such that almost all GPIB devices are compa-
tible when a reasonable systematic protocol
is designed.

Parallel Poll GPIB Drivers

Both parallel poll subsets require that open
collector GPIB transceivers be used to re-—
turn the status byte when polled. The GPIB
driver, pack 1B, is enabled for open
collector operation automatically during a
parallel poll. This is accomplished by the
75453 at pack location 1E. During normal
operation, the drivers operate in three-state
mode for the fastest data transfers. See the
discussion on 'GPIB Transceivers' in this
section.

SERIAL POLL REGISTER (BASE+5H, W)
TALKER/LISTENER

The serial poll facility of the GPIB is the
easiest and most useful polling method used
on the GPIB. The main distinction of serial
polling over parallel polling is that in serial
polling, each talker/listener can interrupt
the controller at any time via the Service
Request (SRQ) line. When paraliel polling
has been implemented the controller must
periodically poll or interrogate the bus to
check device status.

DIO8{DIO7|DIO6 [DIO5|DIO4| D103 |DIO2|DIO1
S8 |rsvl| S6 | S5 | S4 | S3 | S2 | S1

TMS 9914A Serial Poll
Register.

Figure 12,

When an SRQ is generated by a device using
serial poll, the controller sends the Serial
Poll Enable (SPE) message to the GPIB. Each
device participating in the serial poll, re-
gardless of whether it generated a service
request or not, goes into the Serial Poll Mode
State (SPMS) where each device must get
ready to participate in the serial poll.

The controller then sequentially or "serial-
ly"™ runs down a device address list, ad-—
dresses a device to talk, and then listens to
or reads the device response called a "Serial
Poll Response Byte". If the polled device

truely generated a service request (realizing
that more than one device could have re-
quested service), the device must assert, as
a minimum, bit 7 of its serial poll response
byte. If bit 7 is not asserted then the con-
troller knows the device did not request ser—
vice. The controller keeps polling until all
the devices in the device list have been
polled.

The remaining seven bits of the serial poll
response byte may contain user—defined in-
formation such as the type of service re-
quested or some other machine status. This
makes the serial poll mechanism the most
popular of the GPIB polling techniques.

The Serial Poll Register (SPOLR) is used
only when the zSBX 20 is a talker/listener.
The zSBX 20 must store its serial poll
response byte in this register When the
GPIB controller sends a SPE message to the
bus followed by the zSBX 20 talk address,
the contents of the Serial Poll Register are
placed onto the GPIB data bus. The zSBX 20
will keep asserting the response byte until
the controller re-addresses another device
to talk or sends the Serial Poll Disable (SPD)
message. The controller must read the serial
poll response byte only once and then
continue the serial poll.

The zSBX 20 can generate a service request
by two methods. The easiest and most used
method is via the auxiliary command called
"Request Service Two" (RSV2) thatis writ-
ten to the Auxiliary Command Register (see
the discussion on Auxiliary Commands). This
method should be used whenever possible.
When the service request has been gen-
erated, the controller will eventually per-
form a serial polls The suggested protocol
follows:

(1) The 2zSBX 20 will request service
(asserts SRQ) via the RSV2 command.

(2) The GPIB controller will send a Serial
Poll Enable (SPE) message.

(3) The controller will address the zSBX 20
to talke

(4) The controller will deassert the At-
tention (ATN) line, and the zSBX 20 serial
response byte will be automatically placed

zSBX 20 GPIB Hardware Description

on the GPIB data bus. The SRQ line will be
automatically cleared after being read.

(5) The controller will read the response
byte and the zSBX 20 will generate a Serial
Poll Active State (SPAS) interrupt, to the
on-board 8085 CPU, if enabled (see the In-
terrupt Status and Mask Register).

(6) The controiler will reassert ATN and
take control of the GPIB again. A second
SPAS interrupt will be generated on the
zSBX 20 if enabled.

(7) The controller will continue polling the
remaining devices on the GPIB. The serial
poll is terminated by the Serial Poll Disable
(SPD) message sent by the controller after
the controller polls the last device.

The second method of requesting service is
accomplished by writing a 1 to the RSV1 bit
in Serial Poll Register. The same protocol is
used as with RSV2 except that in order for
the zSBX 20 to ever generate another ser-
vice request, the RSV1 bit must first be
cleared by writing a O to it. The RSV1 bit
would then be ready to be set again.

When the zSBX 20 has notrequested service,
but is serial polled by the controller as a
result of another device requesting service,
the response byte is transferred to the GPIB
data bus asin the two cases above. The SPAS
bit in the Interrupt Status Register 0 (INTO)
is never set, and thus never generates an
interrupt. Also, bit 7 of the Serial Poll
Response byte is not asserted.

DATA IN REGISTER (PORT 7H, R)
CONTROLLER, TALKER/LISTENER

The zSBX 20 reads all data from the GPIB
via the Data In Register (DIN). The GPIB
hardware on the zSBX 20 was designed such
that it will not let you lose a single byte of
data before the CPU can read the Data In
Register. The GPIB hardware will suppress
the three wire handshake either automati-
cally or under software control, allowing an
infinite length of time for the CPU to read
the in-coming data.

The Data In Register will only accept a byte
of data from the GPIB if the previous byte
was read, and only if any previous data

29

ZzSBX 20 Multimodule Manual

"hold-offs" (see the Auxiliary Commands)
have been removed by the processor. Also,
data can only be read from the GPIB if the
zSBX 20 has been addressed to listen, as in
the case when the zSBX 20 is a talker/lis-
tener or if the zSBX 20 put itself in a "talk-
only™ mode as in the case where it is the
GPIB controller.

The following suggested protocol can be
used when the zSBX 20 is a-GPIB listener:

(1) When the GPIB controller addresses
the zSBX 20 to listen, the My Address {MA)
and My Address Change (MAC) interrupts
will occur if enabled (see the Interrupt
Register discussions). The zSBX 20 will be
put in the Listener Primary Addressed State
(LPAS) and Listener Addressed State
(LADS). '

(2) The controller will remove control by
deasserting Attention (ATN)

(3) The active talker, which could be the
controller or any other talking device, will
send a valid data byte. The Byte-in (BI)
interrupt will be generated if enabled. The
CPU must then read the byte from the Data
In Register.

(4) Step (3) will be repeated for each data
byte sent by the active talker.

(5) After the last data byte is sent by the
talker and subsequently read from the Data
In Register, the controller will un-address
the zSBX 20 from listening by a Universal
Unlisten (UNL) message. A MAC interrupt
will be generated if enabled.

Making the zSBX 20 a listening controller is
a little more difficult. The zSBX 20 must
first be initialized as a controller. The
following protocol is suggested:

(1) Generate a chip reset and clear reset
via the Softwaie Reset (swrst) auxiliary
command.

(2) Force the zSBX 20 to take control of
the GPIB and to send Interface Clear (IFC)
to the GPIB by issuing the Send Interface
Clear (SIC) auxiliary command. The zSBX 20
will then be the system controller.

30

(3) Put the 2zSBX 20 into the "talk only"
mode by issuing the talk only {ton) auxiliary
command. This will complete the zSBX 20
controller initialization. The talk only mode
can be considered the default controller
mode.

(4) Put the zSBX 20 into the "listen only"
mode by issuing the listen only (lon) auxi-
liary command. A GPIB controller should al-
ways default to the talk only mode so it can
talk or send GPIB messages.

(5) Force the zSBX 20 to release control
and deassert ATN via the Go To Standby
(gts) auxiliary command.

(6) The zSBX 20 may then listen to the
GPIB data bus. The CPU can read the Data
In Register as in step (3) and (4) above with
each byte predicated by a Bl interrupt if
enabled.

(7) After the last byte is read by the zSB X
20, the zSBX 20 can re-take control of the
GPIB by issuing the Take Control Synchron-
ously (tcs) auxiliary command. The ATN line
will be reasserted.

(8) The zSBX 20 should be put back into
the talk only mode.

Note that the zSBX 20 has a separate Data
In Register and a Data Out Register which
means that GPIB data can be read and writ-
ten without destroying the contents of the
opposite register.

Several data "hold-off" modes can be se-
lected via the auxiliary commands. These will
be discussed in detail later, The main func-
tion of data hold-off is to suppress the hand-~
shake on the GPIB long enough to let the
CPU examine the data byte being listened to.

The data may be just data, but more often it
is an unrecognized command such as a
Paralle! Poll Enable or a secondary address.
Messages or commands are different than da~
ta, for the controller is asserting ATN and
the GPIB hardware will normally accept the
message without waiting for the CPU to read
the Data In Register. A "held-off" data
byte or message is "unheld" or "released"” by
one of the release hold-off auxiliary com-
mands also discussed later.

DI08|DIO7|D106 [DIO5{D104 |DIO3{D102{ DIO1

TMS 9914 Data In
Register.

Figure 13,

DATA OUT REGISTER (BASE+7H, W)
CONTROLLER, TALKER/LISTENER

The Data Out Register (DOUT) is used by
the zSBX 20 to send or output data to the
GPIB data bus. When Attention (ATN) is as=
serted on the GPIB, the data becomes a com-
mand or message. Only the controller cur-
rently in charge of the bus can send com-
mands. Every data transaction via the Data
Out Register is accompanied by a handshake.

The Byte Out {BO) interrupt in the Interrupt
Status Register is used to tell the CPU that
the previous byte sent by the zSBX 20 was
accepted by all other devices on the GPIB,
that is, the handshake was completed. Also,
when the zSBX 20 is first addressed to talk
by the current active controller, and ATN is
unasserted, the BO bit goes high and a BO
interrupt is generated if enabled. This action
tells the CPU that it is okay to write out to
the Data QOut Register. The BO bit will not
be set again until the current byte was ac-
cepted by all GPIB devices.

The system designer must make provisions for
terminating data transfers, because the last
byte written to the Data Out Register that
is accepted by the GPIB will set the BO bit.
To prevent the CPU from blindly trying to
write another byte to the Data Out Reg-
ister, some convention must be invented to
terminate data strings. The current talker
must know either the number of bytes it must
send, and/or the last character (end-of-
string character) sent. The active lis—
tener(s) should also know this. The End-Or-
Identify line on the GPIB will also serve the
purpose of indicating the "End" of a data
transfer. The EOI line should be asserted by
the talker with the last byte to tell all
listeners to not expect any more data. See
the Auxiliary Commands for asserting EOI.

When the zSBX 20 is used as a GPIB control~
ler, the following protocol should be ob~-
served to initialize the Data Out Register
for sending data.

zSBX 20 GP!B Hardware Description

(1) Execute a software reset and clear
reset via the swrst auxiliary command.

(2) Send Interface Clear (IFC) and take
control (assert ATN) via the Send Interface
Clear (sic) auxiliary command. Do not forget
to clear the command.

(3) The Byte Out (BO) bit will then be set,
indicating a "receptive™ GPIB data bus.
Reading the BO bit in the Interrupt Status
Register 0, it will clear the BO bit, but the
Data Out Register will still be ready.

(4) Put the zSBX 20 in the talk only mode
via the talk only (ton) auxiliary command.

(5) A byte may be written to the Data Out
Register providing that the BO bit was set as
a result of the sic auxiliary command and
that nothing else was written to the Data
Out Register prior to that point. A software
polling loop should be implemented to wait
for BO to be set, keeping in mind that once
the BO bit is read, it is cleared by the read
operation.

(6) When BOisset, and a byte is written to
the Data Out Register, the byte gets sent to

-the GPIB as a command and not data. Thisis

because ATN was asserted by the sic auxi-
liary command. Be sure the byte is indeed a
valid GPIB message that can be interpreted
by the devices on the GPIB.

(7) To send data to a device on the GPIB,
the zSBX 20 must first address the correct
device(s) to listen to the data. After the
devices have been addressed to listen, the
zSBX 20 must remove the ATN line by issuing
the Go To Standby (gts) auxiliary command.

(8) When BO is set, a data byte may be

~written to the bus. All devices will complete

the handshake, causing BO to be set again,
but only the active listeners will actually
"read" the data.

(9) The controller should take control

again by asserting ATN via the Take Control
Asynchronous!y (tca) auxiliary command.

31

zSBX 20 Multimodule Manual

INTERRUPT MASK/STATUS REGISTERS
(BASE+0,1H, R/W)
CONTROLLER, TALKER/LISTENER

The Interrupt Mask and Status Register are
the most used registers by the zSBX 20 when
interfacing to the GPIB, whether or not in-
terrupts are even used. These interrupt reg-
isters should be studied in great length in
order to understand the operation of the
GPIB interface. The Interrupt Registers are
usually the first and last registers read when
using the GPIB interface, and usually point
to the next operation, if any, to perform.

The interrupt registers operate indepen-
dently of the mask register. No interrupt is
generated if the corresponding mask bit is
set to a zero (i.e., masked off). The status
registers are double buffered such that any
event which causes a status register to
change during a CPU read cycle will be
stored and will set the corresponding bit at
the end of the read cycle. The previously set
bits are cleared at the end of the read. The
interrupt status registers are also cleared by
either a hardware reset or a Software Reset
(swrst) auxiliary command.

With the exception of INTO and INT1, each
bit is set when the corresponding event oc-
curs. Once set, the corresponding register
must first be read, and then the interrupt
condition be false and true again before that
status bit will be set again. However, INTO
and INT1 are set only on the condition that
at least one event occurs in status registers
0 or 1, and that the corresponding bit in the
interrupt mask register is also set, that is,
masked on so that interrupts are enabled.
Note that the INTO and INT1 bits are only
cleared when the interrupt register causing
the interrupt is read. Also note that an
interrupt is enabled, that is, masked on when
the mask bit is set to a one. Both mask
registers are cleared by a hardware reset,
but not by Software Reset.

INTO|INT1| BI | BO | END | SPAS|{RLC | MAC | S

Figure 14, TMS 9914A Interrupt
Mask/Status Register O,

32

X X Bl | BO | END [SPAS|RLC | MAC | M

The Interrupt O (INTO) and Interrupt 1
(INT1) bits indicate that a condition in the
Interrupt Status Register O or Interrupt
Status Register 1 caused an interrupt, re-
spectively. Obviously, at least one of the
conditions must have been enabled to gener-
ate an interrupt by having set a correspond-
ing mask bit at an earlier time. Any GPIB
interrupt, when enabled, will generate a
RST6.5 interrupt to the on-board CPU. The
interrupt service routine should first disable
all 8085 interrupts via the Disable Interrupt
(DI) instruction, to prevent further inter-
rupts from possibly being serviced, and then
read the INTO and INT1 bits to see what
GPIB activity caused the interrupt.

The Byte In (B!) bitis set when a data byte
or a command has been received by the GPIB
Data In Register. The primary function of
the Bl bit is to tell the on-board CPU to
hurry up and read the Data In Register so
that another byte may be input. The Bl bitis
reset when the CPU reads the INTO register.
The Bl bit will not be set when the zSBX 20
is in the shadow handshake mode. See the
auxiliary commands discussion.

The Byte Out (BO) bit is set when the Data
Out Register is ready to be loaded with a
data byte or GPIB command. It basically tells
the on-board CPU that all the GPIB devices
have accepted the last byte and/or that each
device isready for another byte or command.
This bit is also reset by reading the INTO
Register.

The End (END) bit indicates that the byte
just received in the Data In Register was the
last byte, indicated by the End-Or-ldentify
(EOI) line on the GPIB being asserted by the
active talker. The talker could have been
the controller.

The Serial Poll Active State (SPAS) bit gets
set twice during serial polling. It is read
when the zSBX 20 is a talker/listener only.
If the corresponding mask bit is set, it also
will generate two interrupts with each set
condition. The SPAS bit first gets set when
the controller reads the serial poll response
byte from the zSBX 20.

When the controller reasserts the Attention
line after reading the zSBX 20 response byte
(usually to poll another device or disable

serial poll), the second setting of SPAS
occurs. If the zSBX 20 never requested ser-
vice, but gets serial polled as a result of
another device requesting service, the SPAS
bits will not get set, and no corresponding
interrupt will be generated. Keep in mind
that the Serial Poll Register contents will
still be read by the controller.

The Remote-To-Local Change (RLC) bit
gets set whenever the controller in charge
sends a Remote or Local message {or REN)
to the zSBX 20. The RLC is only used when
the zSBX 20 is a talker/listener. The RLC
message implies that an instrument may re-
spond to its "front panel" controls if the
front panel was previously disabled by the
GPIB controller. RLC does not mean any-
thing inherent to the zSBX 20 because itisa
microcomputer and the microcomputer always
has access to the GPIB hardware as long as
it is running. RLC would only haverelevance
to the zSBX 20 if it was being used to inter-
face to a human interface such as a keyboard
or control panel. The zSBX 20 could then in-
terpret the RLC message and subsequent
RLC bit setting to "return to local" control
of the operator by scanning and responding
to the control panel again. The power up
configuration for a GPIB instrument is nor—-
mally a local control state that may be re-
moved or superseded by the GPIB controller.

The My Address Change (MAC) bit is only
read when the zSBX 20 is a talker/listener.
The MAC bit is set whenever the zSBX 20
address status has been changed by the GPIB
controller. The MAC should be the first bit
examined when any change in talker/listener
addressing is suspected by the zSBX 20. As
an example, when the controller addresses
the zSBX 20 to listen, the MAC bit is set.
The MAC bit is reset by reading the INTO
Register. The zSBX 20 should then go into
some listen routine designed by the user.
When the controller unaddresses the zSBX
20 to listen, that is, the zSBX 20 is no longer
an active listener, then MAC is set again.

GET | ERR |[UNC| APT [DCAS| MA |SRQ [IFC | M
GET | ERR [UNC| APT [DCAS| MA | SRQ | IFC | S

Figure 15, TMS 9914A Interrupt
Mask/Status Register 1.

zSBX 20 GPIB Hardware Description

The Group Execute Trigger (GET) bitis used
only when the zSBX 20 is a talker/listener to
indicate when the GPIB controller sent the
Group Execute Trigger message to the GPIB.
The zSBX 20 must have previously been ad-
dressed to listen by the controller., The GET
message can be used as a GPIB system syn-—
chronization signal where multiple listeners
can respond to a command at the same in-
stant. This can be useful in a system where
the controller needs to start or stop a group
of real-time clocks on the GPIB.

The Error (ERR) bit is used to detect errors
in the handshake sequence. When the zSBX
20 is going to send a byte to the GPIB, and
the Not-Ready-For-Data (NRFD) and Not-
Data~Accepted (NDAC) lines are both sense
high indicating an invalid source handshake,
the ERR bit is set and the byte in the Data
Out Register is not sent. Thisis not a typical
condition in GPIB systems, and thus the ERR
bit usually indicates that no devices in the
system are addressed to listen.

The Unrecognized Command Group (UNC) bit
is used to tell the zSBX 20 that a GPIB
command sent by the controller is not known
by the TMS 9914 A hardware. This means that
the interpretation of the command must be
handled by software. The UNC bit is only
used when the zSBX 20 is a talker/listener.
The zSBX 20 could be an inactive controller
currently acting as a talker/listener. The
following three bus messages that set the
UNC bit are:

(1) Take Control (TCT) if the zSBX 20 is
addressed to talke.

(2) My Secondary Address (MSA) if the Pass
Through Next Secondary (pts) auxiliary
command was issued previously.

(3) Unrecognized Universal Command Groups
(UUCG) or Unrecognized Addressed Com-
mand Group (UACG). See the IEEE 488
Standard Section 2.13.

The Address Pass-Through (APT) bit is used
by the zSBX 20 only when it is a talker/lis-
tener. The APT bit tells the zSBX 20 that an
extended or secondary address was sent by
the GPIB controller. To enable the zSBX 20
for secondary addressing, the APT bit in the
Interrupt Mask Register 1 must be set.

33

ZSBX 20 Multimodule Manual

When any secondary address gets sent by the
controller, an APT interrupt is generated
and an automatic Accepted Data State
(ACDS) holdoff is initializeds No more GPIB
bus activity will take place until the zSBX
20 CPU reads the secondary address from the
Command Pass Through Register and issues
one of two auxiliary commands.

If the CPU recognizes the secondary address
as a valid secondary address, then the data
holdoff is released by sending the Data Ac-
cepted Release (dacr) auxiliary command
with the most significant bit set highe This
action completes the handshake, allowing
GPIB activity to continue, forcing the zSBX
20 to enter the completed address state.

If the CPU does not recognize the secondary
address as being valid then a dacr auxiliary
command is issued with the most significant
bit set low. This forces the zSBX 20 to
complete the handshake but not enter the
completed addressed state.

Secondary addressing is also useful for
sending information other than addresses as
the creative system designer might imagine.

The Device Clear Active State (DCAS) bit is
used only when the zSBX 20 is a talker/lis—
tener. The DCAS tells the zSBX 20 that the
GPIB controller sent the Device Clear (DCL)
message. DCL is sent by the controller to
"clear" all or a subset of talker/listener on
the bus individually selected by prior listen
addressing.

The effect of DCL on a device is a function
of system design. It is not meant to be a
"reset" but could indirectly be used in that
manner. System designers may implement the
DCL message to force the listening device to
enter the power on (pon) state thus forcing
all states into an idle condition.

The system designer could also define the
DCL function to force listening devices into
any "non-obtrusive" state. As an example, if
the zSBX 20 were used as a GPIB data log-
ging system, DCL might be implemented to
reset any internal software counters or
timers, but not to clear data.

The My Address (MA) bit is only used when
the zSBX 20 is a talker/listener. The MA bit

34

tells the zSBX 20 that it has been addressed
to talk or listen by the controller. The MA
bit is not set after the Serial Poll Enable
(SPE) message has been sent by the con-
troller, that is, during a serial poll sequence.
The My Address Change (MAC) bit, however,
is effected. See the MAC bit discussion
above.

The Service Request (SRQ) bitis used by the
zSBX 20 when it is a controller only. The
SRQ bit is set whenever a device on the
GPIB requests service from the zSBX 20
controller by asserting the SRQ line.

The Interface Clear (IFC) bit is only used
when the zSBX 20 is a talker/listener. The
IFC bit tells the zSBX 20 when the system
controller asserts the IFC line on the GPIB.
IFC is normally pulsed only during power up
time and/or reset. When the zSBX 20 detects
an IFC pulse, the software should completely
reinitialize the system. All GPIB functions
should be put in their idle state.

Note to the reader: When the GET, UNC,
APT, DCAS, and MA bits have been enabled
to generate an interrupt to the CPU, and one
of these states occurs, thus generating an
interrupt, am Accept Data State (ACDS)
holdoff is automatically initiated. All GPIB
activity is then temporarily suspended and
the handshake is "suppressed". The on-board
CPU must interpret the cause of the inter-
rupt, take appropriate action depending on
the system, then complete the handshake by
issuing the release data holdoff (dacr) auxi-
liary command. This necessary feature of the
zSBX 20 gives the on-board processor time
to respond to interrupts without losing GPIB
information.

AUXILIARY COMMAND REGISTER
(BASE+3H, W)
CONTROLLER, TALKER/LISTENER

The Auxiliary Command Re~ister (AUXCMD)
provides many of the special features of the
zSBX 20 GPIB interface. An auxiliary com-
mand is issued by writing the command byte
to the Auxiliary Command Register. Each
auxiliary command is explained in detail in
the following subsection. Please see the TMS
9914A AUXILIARY COMMANDS figure.

C/S| XX | XX | f4 [f3 f2 | f1 fo

Figure 16 TMS 9914A Auxiliary
Command Register.

TMS 9914A AUXILIARY CCMMANDS

A number of the auxiliary commands are the
CLEAR/SET type. If a command is loaded
with the C/S bit equal to one, the function is
selected and remains selected until the code
is loaded with the C/S bit equal to zero. The
Talk Only (ton) and Listen Only (lon)
commands operate in this manner.

Other commands, such as the Force EOI
(feoi) and Release RFD Holdoff (rhdf)
commands, have a pulsed mode of operation
where the C/S bit is not applicable (na), as
shown in the auxiliary command table.

zSBX 20 GPIB Hardware Description

The Force Group Execute Trigger (fget) and
Return To Local (rtl) commands can operate
in either CLEAR/SET or pulsed modes. If the
"fget" command is loaded with C/S equal to
zero, a pulse appears at the trigger output of
the TMS 9914A., If the command is loaded
with the C/S bit equal to one, the trigger
output goes high until the command is issued
again with C/S equal to zero.

If the Return To Local (rtl) command is is-
sued with C/S equal to zero, the REM status
bit in the Address Status Register is reset.
REM can be set again at any time by a REN
command from the GPIB controller in charge.

If the rtl command isissued with C/S equal to
one, the REN bit is cleared and cannot be
set until the rtl command isissued again with
C/S equal to zero. The rtl command has no
effect if the Local Lockout (LLO) mode has
been selected by the GPIB controller.

C/S F4 F3 F2 F1 FO MNENONIC FUNCTION

0/1 0 0 0 0 0 swrst Software Reset

0/ 0 0 0 0 1 dacr Release ACDS Holdoff
na 0 0 0 1 0 rhdf Release RFD Holdoff
0/ 0 0 0 1 1 hdfa Holdoff On All Data
0/1 0 0 1 0 0 hdfe Holdoff On EOI Only
na 0 0 1 0 1 nbaf New Byte Avail. False
0/1 0 0 1 1 0 fget Force Group Exec. Trige.
0/1 0 0 1 1 1 rtl Return To Local

na 0 1 0 0 0 feoi Send EOl w/Next Byte
0o/ 0 1 0 0 1 lon Listen Only

0/1 0 1 0 1 0 ton Talk Only

na 0 1 0 1 1 gts Go To Standby

na 0 1 1 0 0 tca Take Control Asynch.
na 0 1 1 0 1 tcs Take Control Synch.
0/1 0 1 1 1 0 rpp Request Parallel Poll
0/1 0 1 1 1 1 sic Send Interface Clear
0/1 1 0 0 0 0 sre Send Remote Enable

na 1 0 0 0 1 rqc Request Control

na 1 0 0 1 0 rlc Release Control

0/1 1 0 0 1 1 dai Disable All Interrupts
na 1 0 1 0 0 pts Pass Thru Next Sec.
0/1 1 0 1 0 1 stdl Set T1 Delay

0/1 1 0 1 1 0 shdw Shadow Handshake

0/ 1 0 1 1 1 vstdl Very Fast T1 Delay
0/1 1 1 0 0 0 rsv2 Request Service 2

Figure 17. TMS 9914A Auxiliary Commands.

35

zSBX 20 Multimodule Manual
Software Reset (swrst) 0/1X X00000

The Software Reset Command is issued when
the zSBX 20 is a talker/listener or a control=-
ler. In both cases, the swrst must be issued
at power up and/or system reset to begin ini-
tialization of the GPIB hardware. When the
zSBX 20 is a talker/listener, the swrst
should be executed when the GPIB controller
asserts the Interface Clear (IFC) line.

Issuing the swrst command with C/S equal to
one causes all input to the GPIB hardware to
be ignored. The Serial Poll Register, Paraliel
Poll Register 0 and 1 are cleared. Also, when
the swrst is set, the GPIB hardware is forced
into the following states:

SIDS Source Idle State

CIDS Controller Idle State

AIDS Acceptor Idle State

LOCS Local State

TIDS Talker fdle State

NPRS Negative Poll Response State
TPIS Talker Primary Idle State
PPIS Parallel Poll Idle State
LIDS Listener Idle State

SPIS Seria! Poll Idle State

LPIS Listener Primary Idle State

When a power-on or push-button reset is
generated on the zSBX 20, the swrst is
automatically generated internal to the
GPIB hardware, forcing the swrst command
into its set condition. Whenever the swrst
command is set, either by software or auto-
matically, it must be cleared by re-—issuing
the swrst command with C/S equal to zero.

Release ACDS holdoff (dacr) 0/1XX00001

The Release Accepted Data State holdoff
command (dacr) is used when the zSBX 20 is
a talker/listener. The dacr command is issued
to camplete a handshake that was put into
Data Accepted Holdoff as the result of re~
ceiving an unrecognized command, secondary
address, device trigger or device clear
message. When the zSBX 20 isreceiving data
from the GPiB, and an ACDS holdoff occurs,
the talking device holds the data in its valid
state giving the on-board CPU unlimited time
to read and process the valid data. When the
CPU has decided what to do with the data, it
completes the handshake via the dacr
command.

36

The dacr command is used in two modes: sec—
ondary addressing, and primary addressing
only. When Address Pass Through (APT) in-
terrupt is enabled, an ACDS holdoff will
occur whenever a secondary address is re-
ceived. If the CPU recognizes the secondary
address as being valid, the CPU must issue
the dacr command with C/S equal to one. If
the secondary address is invalid, the dacr
must be issued with C/S equal to zero. In any
case, the handshake is complete; however,
the zSBX 20 remains unaddressed for invalid
secondary addresses.

When secondary addressing is not being used,
ACDS holdoffs due to unrecognized com-
mands are released by issuing the dacr com-
mand with C/S equal to zero.

Release RFD Holdoff (rhdf) naxx00010

The Release Ready for Data Holdoff com-
mand is used by the zSBX 20 when itis both a
talker/listener and controller. The rhdf com-
mand is issued to release any data holdoff
caused by a hdfa or hdfe auxiliary command.
The C/S bit is not applicable.

There is an important distinction between a
RFD and ACDS holdoff, The ACDS holdoffis
used to give the on-board CPU time to read a
GPIB command. The byte remains valid as
long as the CPU needs to process the data
and issue the dacr command completing the
handshake. Bus activity is terminated.

A RFD holdoff occurs after a byte was ac-
cepted and read by the CPU. No other data is
sent. No more valid data is allowed on the
bus until the rhdf command is issued, com-
pleting the handshake. In both cases, GPIB
activity is suppressed, but in the ACDS case,
current data is being evaluated, and in the
RFD case there is no current valid data.

Holdoff On All Data (hdfa) 0/1XX00011

The hdfa command is used by the zSBX 20
when it is both a talker/listener and a con-
troller. When the hdfa command is issued
with C/S equal to one, a Ready For Data
Holdoff (RFD) is generated with every GPIB
data byte. The handshake must be completed
by issuing the rhdf command., GP!B commands,
that is when Attention is asserted, are not
affected by this command. The hdfa command

is unasserted by issuing the command with
C/S equal to O,

Holdoff On EOI Only (hdfe) 0/1XX00100

The hdfe command is used by the zSBX 20
when it is a talker/listener or a controller.
When the hdfe command is issued with C/S
equal to one, a Ready For Data Holdoff
(RFD) is generated for the last GPIB data
byte indicated by the End-Or-ldentify
(EOI) signal. This holdoff gives the CPU time
to respond to a string of data terminated by
EOI before allowing another string to be re-
ceiveds The holdoff must be released by
issuing the rhdf command, thus completing
the handshake. The hdfe mode is unasserted
by issuing the hdfe command with (C/S=0).

Set New Byte Available False
(nbaf) naXX00101

The nbaf command is used by the zSBX 20
only in the talker modes. The C/S bit is not
applicable. The main function of nbaf is to
"back out" of a GPIB data send sequence by
cancelling the data previously written to the
Data Out Registers The protocol is as
follows:

(1) Assume the zSBX 20 has been an active
talker, sending a string of data bytes to the
addressed listeners.

(2) Assume that in midstream of this string
of data that a particular byte sent out by the
ZSBX 20 is accepted by all devices, that is,
the handshake is completed. If for some
system—dependent reason, the last byte sent
demanded immediate attention of the GPIB
controller, such as an error condition, the
controller would take immediate control of
the GPIB (assert Attention).

(3) The zSBX 20 would still see the Byte
Out (BO) bit set in the Interrupt Status
Register 0, indicating the need to write out
the next byte in the data string to the Data
Out Register, If this happens, the Data Out
Register cannot be written again until that
last byte written, that is, the byte following
the error, is accepted by the GPIB listeners.
Assume that happened:

(4) When the controller releases Attention
again, the last byte written to the Data Out

zSBX 20 GPIB Hardware Description

Register will be sent automatically to the
GPIB, requiring all listeners to accept the
byte. If this is not desirable, that is, if as a
result of the previous byte sent, a different
byte than the one currently in the Data Out
Register is needed, the 2zSBX 20 may
"change its mind" by issuing a nbaf command.

(5) When the nbaf command is issued, the
current byte is not "removed" or reset, but
the "validity" of the byte is cancelled, that
is, when ATN is released, Data Valid (DAV)
will not be asserted, until a new byte is
written to the Data Out Register. After
nbaf is issued, the Byte Out is also set again,
indicating that the Data Out Register is free
to be written again.

A well organized system designer should be
able to configure a system such that the nbaf
command is not necessary. This command is
only used in a deadlock situation. Also, a
GPIB controller should not take control in
the middle of a block transfer. Provision is
normally provided to terminate a block
transfer, such as an End-Of-String (EOS)
character, byte counter, or End-Or~ldentify
(EOI). :

Force Group Execute Trigger
(fget) 0/1XX00110

This is a general purpose command. The state
of the Trigger output from the TMS 9914A is
affected when this command is issued. If the
C/S bit is zero, the line is pulsed high for
approximately 5 clock cycles (1 microsecond
at 5 MHz). If C/S is one, the TRIGGER line
goes high until "fget" is sent with C/S equal
to zero. No interrupts or handshakes are
initiated and only the TMS 9914A is af-
fected. The Trigger Output pinis not used on
the 2zSBX 20.

Return To Local (rtl) 0/1XX00111

This is also a general purpose command.
When the rtl command is issued, provided the
local lockout (LLO) has not been previously
enabled, the remote/local status bit is reset
and an interrupt is generated (if enabled) to
inform the on-board CPU that it should re-~
spond to front panel controls if applicable.
{f the C/S bit is set to one, the rtl command
must be cleared by issuing the rtl command
with C/S equal to zero, before the device is

37

zSBX 20 Multimodule Manual

able to return to remote control. If C/Sis set
to zero, the device may return to remote
without first clearing rtl.

Force End-Or-ldentify (feoi) naXX01000

This is used by the zSBX 20 when it is a
talker or talking controller. The command
causes the End-Or-ldentify (EOI) message
to be sent with the next data byte. The EOI
line is then reset.

Listen Only (lon) 0/1XX01001

The Listen Only command is used by the
zSBX 20 to set up itself as a listener. This
should only occur if the zSBX 20 is placed in
a system where there is no controller or
when the zSBX 20 is the controller.

After the lon command is issued with C/S
equal to 1, the zSBX 20 becomes a self-
addressed listener indicated by the Listen
Addressed State (LADS) bit being set in the
Address Status Register. The listener fea-
ture must not be disabled, that is, the
Disable Listener (dal) bit in the Address
Register must not be set.

The on-board CPU may read data from the
GPIB via the Data In Register (listen activi-
ty) whenever the Byte In (BI) is set in the
Interrupt Status Register 0. The lon com-
mand isreversed by issuing the command with
C/S equal to zero, or issuing ton Auxiliary
Command.

Talk Oniy (ton) 0/1XX01010

The Talk Only (ton) command is analogous to
the lon command. It is used by the zSBX 20
to address itself to talk although no real ad-
dressing takes place. Use the ton command
only when the zSBX 20 is the controller or if
there is no controller in.the system. An
example of a no—controller system would be a
reporting (talking) voltmeter and a printer
set up as a listener.

To enable the talk only mode, issue the ton
command with C/S equal to one. The ton
should be removed by issuing the command
with C/S equal to zero. After the ton mode
has been enabled, the Byte Out {BO) bit in
the Interrupt Status Register O is asserted
to let the on-board CPU know that itis okay

38

to write to the Data Out Register. When all
the listening devices have completed the
handshake, the BO bit is set again. The Dis~
able Talker (dat) bit in the Address register
must not be set, that is, do not disable the
talk ability of the GPIB hardware.

Note to users: The ton and lon commands
were designed to be used with systems with-
out a controller. However, when the zSBX
20 is the GPIB controller, the ton and lon
functions are used to set itself to talk and
listen respectively. The user should be aware
that if the zSBX 20 as a controller is sending
GPIB messages such as Untalk (UNT), Unlis-
ten (UNL), or Other Talk Address (OTA),
the zSBX 20 talk or listen status is subject
to those messages. For example, UNT will
reset the ton feature, taking the zSBX 20
out of talk activity. Note also that the ton
and lon auxiliary commands are mutually ex—
clusive by the GPIB hardware, that is, the
most recently issued command will be the one
in effect.

Go To Standby (gts) naXXO01011

This command instructs the zSBX 20 to un-
assert the Attention (ATN) line, thus going
to standby. This is a GPIB controller
function only.

Take Control Asynchronously
(tca) naXX01100

This command instructs the zSB X 20 to reas—
sert ATN as controller in charge. The com-
mand is executed immediately and data cor—
ruption or loss may occur if a talker/listener
is in the process of transferring a data byte.
If a controiler has been talking, then use
'tca'! after the last BO interrupt to reassert
the ATN line without corrupting data. A BO
interrupt is generated when the zSB X 20 has
entered the controller active state.

Take Control Synchronously
(tcs) naXX01101

This command is used by the controller in
charge to set the Attention line true and to
gain control of-the GPIB. If the controller is
not a true listener, the shadow handshake
command must be used to monitor the hand-
shake lines. This forces the zSBX 20 to syn-
chronize with the talker/listeners, sending

ATN true only at the end of a byte transfer.
This ensures that no data will be lost or
corrupted. A BO interrupt is generated when
the TMS 9914A has entered the controller
active state,

Request Parallel Poll (rpp) 0/1XX01110

This command is used by the controller in
charge to send the parallel poll command
over the GPIB (the zSBX 20 must be in the
Controller Active State so that the Atten-
tion line is asserted). The poll is completed
by reading the command pass through regis—
ter to obtain the parallel poll response bits,
then sending rpp with the C/S bit equal to
zero. Note that the IEEE 488 Standard re-
quires a minimum of 2 microseconds before
the parallel response is output to the bus.

Send Interface Clear (sic) 0/1XX01111

This command is used when the zSBX 20 is
system controller only., The Interface Clear
(1FC) line is set true when this command is
sent with C/S equal to 1. This must only be
sent by the system controller and reset C/S
equal to O after the IEEE 488 Standard mini-
mum time for IFC has elapsed (100us.). A
longer time of about 5 milliseconds is sug-
gested. The system controller is put into the
controller active state and a BO interrupt is
generated (if enabled).

Send Remote Enable (sre) 0/1XX10000

This command instructs the zSBX 20 to set
the REN line true thus sending the remote
enable message over the GPIB. REN is set
false by sending sre with C/S equal to zero,
causing the GPIB devices to return to local
mode. This command is used only when the
zSBX 20 is the system controller.

Request Control (rgqc) naXX10001

Multiple GPIB controllers are allowed on the
bus although only one controller can be ac-~-
tively in control at one time. Also, there can
only be one ultimate "system" controller.
The function of the system controller is to
take control at power-up time and during
system conflictse Only the system controller
is allowed to assert Interface Clear (IFC)
and Remote Enable (REN).

zSBX 20 GP!B Hardware Description

A controller may "pass control" to another
controller via the GPIB message Take Con-
trol (TCT). The current controller-in-
charge passes control to the zSBX 20 by
sending the zSBX 20 talk address followed
by the TCT message. The zSBX 20 recognizes
the TCT by receiving an Unrecognized Com-
mand Group (UNC) interrupt, if enabled, and
reading the TCT message from the Command
Pass—=Through Register. The zSBX 20 re-
sponds to TCT by issuing the rqc command.
The GPIB hardware then waits for the cur-
rent controller-in-charge to release Atten-—
tion and then asserts Attention itself, going
into the controller Active State. A BO
interrupt is generated if enabled.

Release Control (rlc) naXX10010

The zSBX 20 may pass control (or return
control) to another controller by the same
protocol as the rqc discussion mentioned
previously. In this case, TCT is sent by the
zSB X 20, following the "new" controller talk
address. After the handshake is completed,
the zSB X 20 issues the ric auxiliary command
which releases the Attention line, thus
relinquishing control. The "new™" controller
must then take (retake) control.

Note to users: There is no standard protocol
to enable a controller to regain control once
it has passed control to another device. The
system designer must provide a way to alert
potential controllers and current controllers
that a transfer of control needs to take
place. An easy method to accomplish this is
through the use of a serial poll protocol. This
way, an inactive controller can request ser—
vice of the current active controller via the
SRQ line. When the inactive controller sends
its serial poll response byte during the serial
poll, the response byte must contain the in-
formation indicating arequest for control. If
more than two controllers are used in a
system, then the designer must assign a pri-
ority scheme should multiple controllers
request control simultaneously.

Disable All Interrupts (dai) 0/1XX10011

This command disables the GPIB interrupt
line. The interrupt registers and any holdoffs
selected are not affected. This feature is
useful in systems designed for polling oper-
ation as opposed to interrupt operation,

39

'zSBX 20 Multimodule Manual

Pass Through Next Secondary (pts)
naXX10100

This command may be used to carry out a re—
mote configuration of a parallel poll. The
parallel poll configure command (PPC) is
passed through the zSBX 20 as an unrecog~
nized command and must be identified by the
CPU,., The "pts" command is issued, and the
next byte received by the zSBX 20 is passed
through via the command pass~throughregis—
ter. This should be the parallel poll enable
(PPE) message which is read by the micro-
processor.

Set T1 Delay (stdl) 0/1XX10101

This command is used by the zSBX 20 to set
the data to Data Valid delay time T1. The T1
delay time will be set to 6 clock cycles (1.2
microseconds at 5 MHz) if this command is
sent with the C/S bit at one. The T1 delay
time is 10 clock cycles (2 microseconds at 5
MHz) following a power on RESET, or if stdl
is sent with C/S set to zero.

Three-state driver mode is required when
using the short T1 time, to reduce the set-
tling time of data on the DIO lines. See the
GPIB driver discussion in this section.

Shadow Handshake (shdw) 0/1XX10110

This auxiliary command enables the con-
troller to carry out the listener handshake
without participating in a data transfer. The
Data Accepted line (DAC) is pulled true a
maximum of 3 clock cycles after Data Valid
(DAV) is receiveds Not Ready For Data
(NRFD) is allowed to go false as soon as
DAV is removed. It must be used in conjunc-
tion with the "lon" mode. The END interrupt
can also indicate when to generate an ACDS
holdoff. This permits the controller to sense
the end of string transfers across the GPIB.

The shadow handshake function allows the
"tcs" command to be synchronized with the
Acceptor Not Ready State (ANRS) so that
ATN can be re-asserted without causing the
loss or corruption of a data byte. The END
interrupt can also be received to cause a
RFD holdoff to be generated.

40

Set Very Fast T1 Delay (vstdl) 0/1XX10111

The IEEE 488 specification allows the bus
settling time "T1" to be reduced to 400 NS
on all bytes except the first byte after At-
tention (ATN) is unasserted. Then it isto be
greater than 1100 NS. The zS5BX 20 has a
feature which reduces "T1" to 600 NS (3
clock cycles at 5 MHz) on all bytes but the
first when ATN is unasserted. When ATN is
unasserted or on the first byte, "T1" will be
2 microseconds with stdl not set or 1.2
microseconds with "stdl" set. The feature is
programmable. The vstdl is a clear/set type
command. If vstdl is set, three—state drivers
are required for shorter settling time for
data.

Second Service Request (rsv2) 0/1XX11000

This auxiliary command should be used by a
device to request service from a GPIB con-
troller. Once set true, and a SPAS interrupt
occurs (indicating that the serial poll re-
sponse byte has been read), this bit is au-
tomatically reset by the TMS 9914A logic.
Most systems should request service with this
command as opposed to RSV1 in the Serial
Poll Register. Please refer to the serial poll
register description for more information.

GPIB TRANSCEIVERS
(7516/0,2)

The 7516/0,2 GPIB transceiver chips ensure
that all relevant bus driver/receiver
specifications are met. These transceivers
feature:

500 mV Receiver Hysteresis
Bus-Terminating Resistors

No loading with no power

Meets IEEE 488 - 1978 Standard

LR R N

The sixteen signal lines required by the
interface system are implemented with two
devices. The 75160A handles the 8-bit data
bus and the 75162A handles the handshake
lines and bus management signals.

The 75160A has a Pull-up Enable pin (PE)
that controls the output characteristics.
When PE is low, the 75160A has the charac-
teristics of open-collector outputs. When PE
is high, three-state characteristics are ex-—

hibitede The state of this line is normally
three-state, except during paralle!l polls.

The 75162A octal bus transceiver determines
the direction of REN and IFC via the system
controller (SC) input. This input is con-—
nected to a DIP switch at location 1A, po-

zSBX 20 GPIB Hardware Description

sition 8, and is shipped from the factory
enabled. In the enabled mode, the zSBX 20
acts as a system controiler by sending Re-
mote/Local and Interface Clear messages.

Note: Older 7516/0,2 chips glitch the GPIB
lines when powered on or off.

41

I EEREEEESREREEEREE EEE R EE R E S R R E R R R R R R R R R R R E R R E R R R E R R R R R R R EE R RS

ROUTINES

I EEEEREERER RS ERERERR R RE RS RE R RS R R R ERE R EEE R R R R R R R E R R R R E R EEEEREE EE S

*

* zSBX
*

The GPIB system commands to be discussed

20 GPIB

are shown in Figure 18.

INIT

Talker/Listener
SEND
RECV
XFER

Controller
TRIG
DCLR
SPOL
PPEN
PPDS
PPUN
PPOL
PCTL
RCTL
SCND
SRQD

System Controller

REME
LOCL
IFCL

Figure 18.

INITIALIZATION

SEND DATA
RECEIVE DATA
TRANSFER DATA

GROUP EXECUTE
DEVICE CLEAR
SERIAL POLL

PARALLEL POLL
PARALLEL POLL
PARALLEL POLL
PARALLEL POLL
PASS CONTROL

TRIGGER

ENABLE
DISABLE
UNCNFG.

RECEIVE CONTROL
SEND COMMAND STRING
SERVICE REQUESTED

REMOTE ENABLE
LOCAL

ABORT/ INTERFACE CLEAR

GPIB System Commands.

LA ER B EEE RS]

* * SECTION *
(CONTROLLER) X KRERARRERKR

L] =
Aok koK ok ok kR kR K

Each system command discussed is imple-
mented as a subroutine. Each subroutine
documents the necessary parameters that
must be passed to it to operate properly.
These subroutines, or drivers, assume that
only primary addresses will be used on the
GPIB. The zSBX 20 GPIB Primary address is
read from the DIP switch located at pack
position 3A. The five least significant
switches (switches 1-5) are read and sent to
the GPIB by the subroutines. To use secon-
dary addresses, the test for valid talker/lis—
tener address (range macro) must be modified
to include secondaries. Also assumed is that
the controller is the system controller.

INITIALIZATION

Initialization

This routine is called after power-on or
after a hardware reset before any GPIB
activity occurs. Interface Clear (IFC) is
sent for approximately 5 ms. All interrupts
are disabled and the fast GPIB data settling
rate (T1) is set (note: GPIB transceivers
must be in three-state mode).

INIT:

Reset

IFC
All

Set fast TI1

ton

Return

Figure 19,

interrupts off

;initialize 9914
;Send reset to 9914
;Output IFC for Sms,

;For 3-state drivers
;Set talk only

GPIB Controller [nitialization (INIT).

43

zSBX 20 Multimodule Manual

TALKER/LISTENER ROUTINES

Send Data

SEND <listener list pointer><count>
<EOS><data buffer pointer>

This system command sends data from the
CPU to one or more devices. The data is
usually a string of ASCII characters, but may
be binary or other forms as welle The data
is device-specific.

My Talk Address (MTA) must be output to
satisfy the GPIB requirement of only one
talker at a time (any other talker will stop
when MTA goes out).

This routine assumes a non-null listener list
in that it always sends Universal Unlisten. If
it is desired to send data to the listeners
previously addressed, one could add a check
for a null list and not send UNL. Count must
be 64k or less due to a 16 bit register. This
routine always uses count or an EOS char-
acter to terminate data tranmission. EOI is
sent with the last byte. See Figure 20.

CONTROLLER
8291.8292

LSTN | TALK

CTLR A

DEVICE

TALK
-Q"

DEVICE

DEVICE

LSTN

TALK
K

DEVICE

Figure 20, SEND to "pnmn2n n>um
"ABCD"EOS="D",

SEND:
MTA, WL

While 20H < listener < 3EH
output-to-9914 |istener

;Send non-DMA

;We will talk, nobody listen
;GPIB listen addresses are
;"space™ thru ">" ASCI|

Increment listen list pointer;Address all listeners

Output-to-9914 GTS

If count < > 0 then

I1f count=1 or EOS then FEOI

Decrement count

Increment data pointer

QOutput-to-9914 data

Repeat until all done
Output-to-9914 TCA
Return

Figure 21.

44

;stops asserting ATN, go
; to standby

;Send EOI with last byte

;output GPIB data

;assert ATN, take cont. sync.

GPIB Controller Send (SEND).

zSBX 20 GPIB Routines (Controller)

Receive Data

CONTROLLER

RECV <talker><count><EOS> 82010292
<data buffer pointer> cTLR K

This system command is used to input data
from a device. The data is typically a string
of ASCII characters.

DEVICE

This routine is the dual of SEND. It assumes
a new talker will be specified, a count of
less than 64k, and an EOS character or count
to terminate the input. My Listen Address
(MLA) is sent to keep the GPIB transactions LSTN

totally regular to facilitate analysis by a
GPIB logic analyzer like the Ziatech ZT 488.

DEVICE

Otherwise, the bus would appear to have no DEVICE
listener even though the zSBX 20 will be :
listening. LSTN TALK

Note that although the count may go to zero

before the transmission ends, the talker will DEVICE
probably be left in a strange state and may
have to be cleared by the controller. The N oxs
count ending of RECV is therefore used as
an error condition in most situations. Figure 22. RECV from "R";EQOS=0DH.
RECV: ;Receive data non-DMA
If 40H < talker < SEH then ;GPIB talk addresses are
Output-to-9914 talker ;"@% thru "" ASCII
Increment talker pointer _
Output-to-9914 UNL, MLA ;Everyone except us stop
;listening
Enable-9914
Holdoff on all data ;Stop, check for EOS character
lon, reset ton ;Listen only (no talk)
Output—-to-9914 GTS ;9914 stops asserting ATN, go
; to standby
Input-from-9914 data ;input data, byte by byte
Loop till done
Output-to-9914 TCS ;9914 asserts ATN take control
Enable-9914 ;Put 9914 back as before
No holdoff on all data
ton, reset lon
Finish handshake ;Complete holdoff due to end,
;if any

Return

Figure 23. GPIB Controller Receive (RECV).

45

ZzSBX 20 Multimodule Manual
Transfer Data
XFER<Talker><Listener list><EOS>

This system command is used to transfer data
from a talker to one or more listeners where
the controller does not participate in the
transfer of the ASCII data. Thus the GPIB
data rate is a function of the talker's
transmitting speed and the listener's re-
ceiving speed. The controller will not re-
ceive any data, nor will it slow the transfer
of data by handshaking each byte. This is
accomplished through the shadow handshake
mode while in listen-only.

This routine assumes a device list that has
the ASCII talker address as the first byte
and the string of (one or more) ASCII
listener addresses following. The oc-

currence of EOQOIl being sent by the talker will
cause the controller to take control

synchronously and thereby terminate the
transfer.

Note: The talker must send EQOI with the last
byte for the controller to take charge.

CONTROLLER
8291,8292

TALK
CTLR “A”

LSTN
iy

DEVICE

DEVICE

DEVICE

Figure 24. XFER from "" to "1t nan,
"+".EOS=0DH

XFER:

Qutput-to-9914: Talker, WNL

While 20H < listen < 3EH

Output—-to-9914: Listener

;Send talk address and UNL

;Send listen address

increment listen list pointer

Enable<9914
lon, no ton
Shadow handshake

Holdoff on EOI received
Output-to-9914: GTS

Take control synchronously

Enable 9914
Finish handshake
Not shadow handshake
Not holdoff on EOI
ton

Return

;Controller is pseudo listener
;Handshake but don't capture
;data

;Capture EOI

;Go to standby

;9914 waits for EO! and then
;Regains control

;Go to Ready for Data

Figure 25. GPIB Controller Transfer (XFER).

46

CONTROLLER

Group Execute Trigger
TRIG<Listener List>

This system command causes a group execute
trigger (GET) to be sent to all devices on
the listener list. The intended use is to
synchronize a number of instruments.

zSBX 20 GPIB Routines (Controller)
Device Clear
DCLR<Listener list>

This system command causes a Selective
Device Clear (SDC) to be sent to all devices
on the listener list. Note that this is not
intended to clear the GPIB interface of the
device, but should clear the device-specific
logic.

CONTROLLER
8291,8292

LSTN
oy

DEVICE

TALK

DEVICE

LSTN TALK
g R

DEVICE

DEVICE

LSTN TALK

Figure 260 TRIG "11n t+n,

CONTROLLER
8291.8292

LSTN CTLR: TALK
A

DEVICE

DEVICE

DEVICE

LSTN TALK
o) K

DEVICE

LSTN TALK
™ A

Figure 27. DCLR "11m, m2u,

TRIG:
Qutput to 9914 WNL
Check 20H<listener<3EH
Qutput-to-9914 Listener
Increment list pointer

Output-to-9914 GET
Return

Figure 28.

;Everybody stop listening
;Check listen address
;Address each listener
;Terminate on any bad listen
;address

;Issue group execute trigger

GPIB Controller Trigger (TRIG).

47

zSBX 20 Multimodule Manual

DCLR:
Output-to-9914 UNL

While 20H < Listener < 3EH
-Output—-to-9914 listener
Increment listen list pointer

Qutput-to-9914 SDC
Return

Figure 29.

;Everybody stop listening
;Check for valid listen addr.
;Address each listener
;Terminate on any non-valid
;character

;Selective device clear

GPIB Controller Device Clear (DCLR).

Serial Poll
SPOL<Talker list><status buffer pointer>

This system command sequentially addresses
the designated devices and receives one byte
of status from each. The bytes are stored in
the buffer in the same order as the devices
appear on the talker lists MLA is output for
completeness.

A positive serial poll response (i.e., which
device is requesting service) is determined
by sequentially checking each response byte
in the buffer to see if the second most
significant bit is active.

Parallel Poll Enable

PPEN<Listener
pointer>

list><Configuration PBuffer

This system command configures one or more
devices to respond to Parallel Poll, assuming
they implement subset PP1. The configura-
tion information is stored in a buffer with
one byte per device in the same order as de-
vices appear on the listener list. The config-
uration byte has the format XXX XIP3P2P1 as
defined by the IEEE Std. P3P2P1 indicates
the bit # to be used for a response and 1
indicates the assertion value. See Sec,
2.9.3.3 of the Std. for more details.

CONTROLLER

DEVICE

DEVICE

Figure 30. SPOL HQII, llRlI’ "Kll' nm n

48

CONTROLLER
8291,8292

LSTN

DEVICE

LSTN TALK
qn -Q"

DEVICE

TALK
R

DEVICE

- :
LSTN

TALK
K"

DEVICE

LSTN TALK

Figure 31, PPEN "2" iP3P2P1 = C0111B.

SPOL:

Output-to-9914 UNL, MLA, SPE

While 40H<talker<5EH
Qutput-to-9914 talker
Increment talker list pointer
Enable 9914

lon, reset ton

Holdoff on all
Qutput-to-9914 GTS
Wait for data in (BI)
Qutput-to-9914 TCS
Input-from=9914 data
Increment buffer pointer
Enable 9914

ton, reset lon

No holdoff on all

Output-to-9914 SPD

Return

Figure 32. GPIB Controller

zSBX 20 GPIB Routines (Controller)

;Unlisten, we
;poll enable

;Only one byte of serial

;status from each talker

;Check for valid transfer
;Address each device to talk
;One at a time

listen, serial

poll

;Listen only to get status

;Go to standby

;Serial poll status byte
;Take control synchronously
;Actually get data from 5914

;Send serial
;after all

poll disable
devices polled

Serial Poll (SPOL).

PPEN:.
Output-to-9914 UNL
While 20H<Listener<3EH
Output-t0o-9914 listener

Output 9914 PPC, (PPE+data)
Inc.listener list pointer
Increment buffer pointer

Repeat for each
Return

listener

Figure 33,

;Universal unlisten
;Check for valid listener
;Stop old listener,

;address new

;Send parallel poll info
;Point to next listener
;One configuration byte
;per listener

;Finish listen list

GPIB Controller Parallel Poll Enable (PPEN).

Parallel Poll Disable

PPDS<listener list>

This system command disables one or more
devices from responding to a Parallel Poll by
issuing a Parallel Poll Disable (PPD). It does
not deconfigure the devices.

Parallel Poil Unconfigure

PPUN

/

This system command deconfigures the Par-
allel Poll response of all devices by issuing a
Parallel Poll Unconfigure message.

49

zSBX 20

Multimodule Manual

CONTROLLER CONTROLLER
8291,8292 8291,8292
L;‘EN ’ L?’[N
DEVICE DEVICE
TALK LSTN TALK
o o o
DEVICE DEVICE
> LSTN TALK TALK
ok oot fose
DEVICE DEVICE
LSTN TALK
i o
DEVICE DEVICE
LSTN TALK
> vt
Figure 34, PPDS min, nen >, Figure 35. PPUN
PPDS:
Output-to-9914 WNL ;Universal Unlisten
While 20H<Listener<3EH ;Check for valid listener
Output-to-9914 listener ;Address listener
Increment listener list pointer
Output-~-to-9914 PPC, PPD ;Disable PP on all listeners
Return
Figure 36 GPIB Controller Parallel Poll Disable (PPDS).

PPUN:
Output-to-9914 PPU ;Unconfigure all parallel poll
Return
Figure 37. GPIB Controller Parallel t .I1 Unconfigure (PPUN).
PPOL:

Qutput-to-9914 RPP
Return Data (status byte)

;Execute parallel poll
;From Command Pass Thr.
Figure 38. GPIB Controller Conduct Parallet Poll (PPOL).

50

Conduct a Parallel Poll

PPOL

This system command causes the controller to
conduct a Parallel Poll on the GPIB for
approximately 12.5 ms. (at 6 MHz). Note that
a parallel poll does not use the handshake;.
therefore, to ensure that the device knows
whether or not its positive response was
observed by the controller, the CPU should
explicitly acknowledge each device by a
device—dependent data string. Otherwise,
the response bit will still be set when the
next Parallel Poll occurs.

zSBX 20 GPIB Routines (Controller)

Pass Control
PCTL<talker>

This system command allows the controller to
relinquish active control of the GPIB to
another controller. Normally some software
protocol should already have informed the
controller to expect this, and defined under
what conditions to return control. The TMS
9914 must be set up to become a normal
device and the CPU must handle all commands
passed through, otherwise control cannot be
returned (see Receive Control below). The
controller will go idle.

CONTROLLER
8291,8292

CONTROLLER
8291.8292

s [cra| A

DEVICE
DIO 1 DEVICE
LSTN TALK
1! o
LSTN TALK
ik o
5 . DEVICE
DIO 2 DEVICE —> LSTN TALK
: ST o
LSTN TALK
s oo
DEVICE
003 DEVICE LeTN TALK
L?I.N TA|(|:‘K v DEVICE
' LSTN TALK
J DEVICE LSTN CTLR tg*}ch"
"_.s;r,," T"‘AL,,“ CONTROLLER
Figure 39. PPOL Figure 40. PCTL "Cn"
PCTL:
I f 40H<talker<SEH then
if talker< > MTA then ;Cannot pass control to myself

output-to-9914 talker, TCT
Enable~9914

not ton, not lon

My device address

Undefined comd pass thr.
Output-to-9914 RLCT

Return

Figure 41.

;Take cntrl. message to talker
;Set up 9914 as normal device
;Put device number in
;address register

;Required to receive control
;Put controller in idle

GPIB Controller Pass Control (PCTL).

zSBX 20 Multimodule Manual

Receive Control

RCTL

This system command allows this device to
receive control from the current controller.
This controller will receive control after
being addressed to talk and receiving the
Take Control Command.

CONTROLLER
8291.8292

TALK
LSTN CTLR o
i

DEVICE

[LSTN TALK
e g

DEVICE

{ LSTN TALK

2

DEVICE

[LSTN TALK

K

DEVICE

: LSTN TALK
LSTN t i TALK
il cTLR o

CONTROLLER

Figure 42. RCTL

Send Command String

SCND<command list, list end>

This system command is used to send a
command string to the GPIB. A GPIB
command is defined as having the attention
(ATN) line asserted. The command string
must be terminated by a list end character to
insure proper operation. This command must
be used with caution! Invalid commands can
be easily generated.

Service Requested
SRQD

This system command is used to detect the
occurrence of a Service Request on the
GPIB. One or more devices may assert SRQ
simultaneously, and the CPU would normally
conduct a Serial Poll after calling this
routine to determine which devices are

SRQing.

RCTL:
If Unidentified Command
If TCT and TA ;Take control if Talk Addressed
Clear INT Masks ;Clear Interrupt Masks
Qutput-to-9914 RQC ;Request Control
Set Accumulator > O ;Return Status
Return
Figure 43. GPIB Controller Receive Control (RCTL).
SCMD:
Get Command ;Get first command
If not LEND ;Check for list end
output-to-9914 QMD ;No, output command
increment pointer ;Next conmand
loop until done ;Continue until done
Return
Figure 44. GPIB Controller Send Command (SCND).

52

SRQD:
If SRQ then
Return SRQ
Else return no SRQ

Figure 45. GPIB Controller

zSBX 20 GPIB Routines (Controller)

;Test status bit

SRQ Occurred (SRQD).

SYSTEM CONTROLLER

Remote Enable
REME

This system command asserts the Remote
Enable line (REN) on the GPIB. The devices
will not go remote until they are later
addressed to listen.

Local
LOCL

This system command deasserts the REN line
on the GPIB. The devices will go local
immediately. Depending Front panel controls
on each instrument can now be activated by
the user. This routine is the dual of Remote
Enable routine (REME).

SYSTEM
CONTROLLER
8291.8292

s Tom] T

z
w
-3

DEVICE

LSTN TALK
e -Q”

DEVICE

LSTN TALK
—gr R

DEVICE

LSTN TALK
Y v

DEVICE

LSTN TALK
e A

Figure 46, REME

SYSTEM
CONTROLLER
82918292

L?IN i GTLR 1 T"AAL"K

rd
w
@

DEVICE

LSTN TALK
-y -Q”

DEVICE

LSTN TALK
g “R*

DEVICE

LSTN TALK
PO K"

DEVICE

LSTN TALK
o~ pn

Figure 47. LOCL

REME :
Qutput-to-9914 SRE
Return

;Assert remote enable line

Figure 48. GPIB Controller Remote Enable (REME).

LOCL:
Output-to-9914 SRECLR
Return

;9914 stops asserting REM

Figure 49. GPIB Controller Return to Local (LOCL). 53

zSBX 20 Multimodule Manual
Interface Clear/Abort
IFCL

This system command asserts the GPIB's
Interface Clear (IFC) line for at least 5
milliseconds. This causes all interface logic
in all devices to go to a known state. Note
that the device itself may or may not be
reset, too. Most instruments do totally reset
upon IFC. Some devices may require a DCLR
as well as an IFCL to be completely reset.
The (system) controller becomes Controller-

in-Charge.
SYSTEM
CONTROLLER
LSTN TALK
i s
2

DEVICE

LSTN TALK

plk oo
DEVICE

LSTN TALK

e "R
DEVICE

LsTN
DEVICE

LSTN TALK

ST fye

Figure 50, IFCL
IFCL:
Output-to-9914 SIC ;Assert Interface Clear
Return ;For 5ms.

Figure 51. GPIB Controller Interface Clear (IFCL).

54

L E R EREEEREE R EEREE R R R EE R R R AR EE R R R R R R R ER R R E R R E R R R R R R R R R E R R R R R R E R R RN EEE R ER E B

x®

* zS5SBX 20

*

GPIB

In a typical GPIB system where the zSBX 20
is a device, these subroutines can be used to
send or receive data as addressed by the
controller, Each subroutine documents the
necessary parameters that must be passed to
it in order to operate properly. To initiate
operation the processor must load the para-
meters specified by each routine in certain
registers and then use a "CALL" instruction
to begin operation. Once data has been sent
or received, a "RETURN?" from the subrou-~
tine indicates completion.

When using the zSBX 20 as a device, a
"CALL" to the Send or Receive routine is
indicated by my (zSBX 20) address bit being
set (please refer to the description on the
interrupt status 1 register) and then waiting
for LADS or TADS bit to be set.s LADS would
indicate a "CALL?" to Receive, while TADS
would indicate a "CALL" to Send.

No interrupts are used. To use interrupts,
the TMS 9914A can be enabled to generate
an interrupt on the occurrence of a byte
input (Bl) or a byte output (BO). Using
interrupts would allow the CPU to execute
other instructions while the GPIB sends or
receives data.

ROUTINES

|
LEREEEEEEEEEEEEE R EREE R R E R R R RS RS R R E R R R EEE R R R R R R R R R R E R R R R R R E TR E R EE R R N

INITIALIZATION

Initialization

This routine will initialize the TMS 9914A in
the device mode with no interrupts enabled.
The GPIB Device address is read from the
DIP switch located at pack 3A. The five
least significant switches (switches 1-5) are
read and sent to the GPIB address register
on the TMS 9914A, At power-on time or af-
ter a hardware reset, this routine must be
exe~uted before any GPIB activity is per-
formed with the TMS 9914A used on the
zSBX 20. Please refer to Figure 52,

* * SECTION *
(DEVICE) * KRFREEREE KKK

* X *

TALKER/LISTENER ROUTINES

Send Data
SEND<count><EOS><data buffer pointer>

This routine sends data to one or more
devices on the GPIB. The data is usually a
string of ASCIIl characters, but may be
binary or other forms as well. The data sent
is thus device-specific.

Before initiating operation of this sub-
routine, My Talk Address (MTA) should have
been received by the TMS 9914A. The ad-
dress status of the TMS 9914A may be deter—
mined by the Talk Address Bit being set in
the Address Status Register. Count must be
64K or less due to a 16 bit count register,
The count or an EOS character is used to
terminate the output string. In both cases
EOI is sent with the last byte. Please refer
to Figure 53.

Receive Data

This routine receives data from the current
talker on the GPIB. The data is usually a
string of ASCII characters, but may be one
of several other forms as well (e.g., binary).

Before initiating operation of this sub-
routine My Listen Address (MLA) should
have been received by the TMS 9914 A, The
address status of the TMS 9914 A may be de-
termined by the Listen Addressed bit being
set in the Address Status Register.

When receiving data, count or EOS can ter-
minate the input. Count must bYe less than
64K due to a 16 bit register.

Note that although the count may go to zero
before the transmission ends, the talker will
probably be left in a strange state and may
have to be cleared by the controller. The
count ending RECV is therefore used as an
error condition in most situations (i.e., count
is used as buffer limit protection, while EQOI
or EOS is typically used to terminate the
input). Please refer to Figure 54.

55

zSBX 20

Multimodule Manual

INIT:
Reset
Set-up address

Zero masks
Return

;Initialize 9914

;Send reset to 9914

;Load my device
;Address in 9914

;No interrupts

Figure 52. GPIB Device Initialization (INIT).

SEND:

;Send non-DMA

56

If count <>0 then
If count=1 or EOS send EOI ;Force EOl with last byte
Decrement count
Increment buffer pointer
Output-to-9914 data ;Send data to GPIB
Repeat till all done ;Repeat until done

Return

Figure 53. GPIB Device Send (SEND).
RECV: sReceive data non-DMA

Enable-9914

Holdoff on all data ;Stop, is it EOS Char.?
If count <>0 then

Input-from-9914 data

;Input byte-by-by

Decrement count
Increment data pointer

If EOl or data=EOS ;Input data until
Enablie-9914
No holdoff on all data ;Put 9914 as befo
Finish handshake
Return
Figure 54. GPIB Device Receive (RECV).

te

EOI or EOS

re

L EREEEEER R R AR E R E R R E R E E R R E S E EE R R R E R EE R R R R E R E R R EE R EE R R R R E R R E R EE RN EEEEREEE EE R]

* * * SECTION *
: zSBX 20 JUMPER OPTIONS ::*********:

EEXEEEEE R EEEEEESEEEEEEE R E R R R R R EERE R R E R R ERE R R R R R R R R R R R R R R RE R R R RS E E R E R R ER X

The zSBX 20 has several user selectable with a detailed description to follow. Please
options that can be jumper selected. Jumper refer to the photo of the zSBX 20 in Figure
selections are presented as a flow diagram 55 for ease in locating the various jumpers.

Begin Jumper Selections.

If the zSBX 20's GPIB address is to be different than 4,
then set device address switch.

This DIP switch (pack position 3A) can be changed at any time to contain the
GPIB device address. Please refer to the Address Switch Register description
in the TMS 9914A 1/O port description for more information. The GPIB address
are set in switch numbers 0—4 requiring an AND with$1F to get the proper GPIB
address.

1f the zSBX 20 is a device only (i.e. not a confroller),
then open the System Controller Switch.

This switch located at pack position 3A, #8 when opened disables the IFC ATN
and REN lines from being asserted by the zSBX 20. The System Controiller must
now manage these lines.

Then set device address switch.
This DIP switch can be changed at any time to contain the GPIB device address.
Please refer to the Addess Switch Register description in the TMS 9914A 1/0
port description for more information.

Then remove the shield ground.
Any bus system that connects many pieces of equipment together is a potential
source of ground loops and spurious noise problems.

To help avoid these problems, only one GPIB device should connect the shield in
the GPIB cable to earth ground. The ground is normally connected to ground
by the System Controller. The shield connection may be removed via jumper W5
located next to the GPIB header.

1f the zSBX 20 is to be port addressed by MCS1* rather than MCSO*,
then move W1 to W2.

The zSBX 20 requires 8 1/O port addresses to be accessede MCS1* or MCSO* can
be used to access the zSBX 20.

If an interrupt from the TMS 9914A is desired,
then install W4A for MINTO or W4B for MINTRI1,

The TMS 9914A can generate an interrupt on MINTRO if the TMS 9914A is
initialized with various interrupt masks.

If an interrupt from a trigger is desired,
then install W3B for AMAINTRO or W3A for MINTRI1.

The TMS 9914A can generate an interrupt with its trigger pin on MINTR1 if
enabled. .

End Jumper Selections.

57

ZzSBX 20 Multimodule Manual

=)]

€]

3 LLd
muwﬂz
(
o o

| o
e Tzul

(30

]

V'A3H OT xasz

U U.U_ u-#f
P _ =
ci

| &4 1 3

LMS v+

58

IE R E R EREEREEEEEEEEE R EEE R E R E R R R EEEE R R EE SR ERE R R RS ¥

*

* GPIBJIEEE

*

4838

*

APPEND | X:

*
OVERVIEW * kX k kKK Kk

x % *

LA R EEEE R R EE R R E S EE R R R R R R R AR R E R R R R R R R R SR E R E R R E R EEE R E R R R E R EEE R EE IR E EE R R EE R N

WHAT IS THE IEEE 488 (GPIB)?

The experience of designing systems for a
variety of applications in the early 1970's
caused Hewlett-Packard to define a stan-
dard intercommunication mechanism which
would allow them to easily assemble instru-
mentation systems of varying degrees of
complexity. In a typical situation each in-
strument designer designed his/her own in-
terface from scratch. Each one was inconsis—
tent in terms of electrical levels, pin-outs on
a connector, and types of connectors. Every
time they built a2 system they had to invent
new cables and new documentation just to
specify the cabling and interconnection
procedures.

Based on this experience, Hewlett-Packard
began to define a new interconnection
scheme. They went further than that, how-
ever, for they wanted to specify the typical
communication protocol for systems of in-
struments. So, in 1972, Hewlett-Packard
came out with the first version of the bus
which since has been modified and stan-
dardized by a committee of several manu-
facturers, coordinated through the IEEE, to

perfect what is now known as the IEEE 488

Interface Bus (also known as the HP-IB, the
GPIB and the |IEC bus). While this bus speci-
fication may not be perfect, it is a good
compromise of the various desires and goals
of instrumentation and computer peripheral
manufacturers to produce a common inter-
connection mechanism. It fits most instru-
mentation systems in use today and also fits
very well the microcomputer |/O bus re-
quirements. The basic design objectives for
the GPIB were to:

1. Specify a system that is easy to use,
but has all of the terminology and the
definitions relating to that system
precisely spelled out so that everyone
uses the same language when discussing
the GPIB.

2. Define all of the mechanical, elec-
trical, and functional interface re-
quirements of a system, yet not define

any of the device aspects (they are left
up to the instrument designer).

3. Permit a wide range of capabilities of
instruments and computer peripherals to
use a system simultaneously and not de-
grade each other's performance.

4. Allow different manufacturers' equip-
ment to be connected together and work
together on the same bus.

5. Define a system thatis good for limited
distance interconnections.

6. Define a system with minimum re-
strictions on performance of the devices.

7. Define a bus that allows asynchronous
communication with a wide range of data
rates.

8. Define a low cost system that does not
require extensive and elaborate inter-
face logic for the low cost instruments,
yet provides higher capability for the
higher cost instruments if desired.

9. Allow systems to exist that do not need
a central controller; that is, communi-
cation directly from one instrument to
another is possible.

Although the GPIB was originally designed
for instrumentation systems, it became ob-
vious that most of these systems would be
controlled by a calculator or computer. With
this in mind, several modifications were made
to the original proposal before its final
adoption as an international standard. The
following list highlights the salient char-
acteristics of the GPIB as both an instru-
mentation bus ind as a computer [/O bus.

1. Data Rate
1M bytes/s,max.
250k bytes/s,typ.

2. Multiple Devices
15 devices, max (elect. limit)
8 devices, typ (interrupt flexibility)

59

zSBX 20 Multimodule Manual

3. Bus Length
20 m, max.
2 m/device, typ.

4. Byte Oriented
8-bit commands
8-bit data

5. Block Multiplexed
Optimum strategy on GPIB due to
setup overhead for commands

6. Interrupt Driven
. Serial poll (slower devices)
Paraliel poll (faster devices)

7. Direct Memory Access
One DMA facility at controller serves
all devices on bus

8. Asynchronous
One talker
Multiple listeners

9. I/O to I/O Transfers
Talker and listeners need not include
microcomputer/controller

The bus can be best understood by examining
each of the above characteristics from the
viewpoint of a general microcomputer 1/0
bus.

Data Rate -- Most microcomputer systems
utilize peripherals of differing operational
rates, such as floppy discs at 31k or 62k
bytes/s (single or double density), tape
cassettes at 5k to 10k bytes/s, and cartridge
tapes at 40k to 80k bytes/s. In general, the
only devices that need high speed 1/O are
0.5" (1.3 cm) magnetic tapes and hard discs,
operational at 30k to 781k bytes/s, respec—
tively. Certainly the 250k bytes/s data rate
that can be easily achieved by the IEEE 488
bus is sufficient for microcomputers and
their peripherals, and is more than needed
for typical analog instruments that take only
a few readings per second. The 1M byte/s
maximum data rate is not easily achieved on
the GPIB and requires special attention to
considerations beyond the scope of this note.
Although not required, data buffering in
each device will improve the overall bus
performance and allow more utilization of
the bus bandwidth.

60

Multiple Devices —-— Many microcomputer
systems used as computers (not as com-
ponents) service from three to seven peri-
pherals. With the GPIB, up to 8 devices can
be handled easily by 1 controller; with some
slowdown in interrupt handling, up to 15
devices can work together. The limit of 8 is
imposed by the number of unique parallel pol!
responses available; the limit of 15 is set by
the electrical drive characteristics of the
bus. Logically, the IEEE 488 Standard is
capable of accommodating more device ad-
dresses (31 primary, each potentially with 31
secondaries).

Bus Length —— Physically, the majority of
microcomputer systems fit easily on a desk
top or in a standard 19" (48 cm) rack,
eliminating the need for extra long cables.
The GPIB is designed typically to have 2 m of
length per device, which accommodates most
systems. A line printer might require greater
cable lengths, but this can be handled by
using extra dummy terminations. Overall bus
length should be kept at 2 minimum to ensure
data integrity.

Byte Oriented -— The 8-bit byte is almost
universal in 1/O applications; even 16-bit
and 32-bit computers use byte transfers for
most peripherals. The 8-bit byte matches the
ASCII code for characters and is an integral
submultiple of most computer word sizes. The
GPIB has an 8-bit wide data path that may
be used to transfer ASCII or binary dati, as
well as status and control bytes.

Block Multiplexed -- Many peripherals are
block-oriented or are used in a block mode.
Bytes are transferred in a fixed or variable
length group; then there is a wait before
another group is sent to that device, e.g.,
one sector of a floppy disc, one line on a
printer or tape punch, etc. The GPIB is, by
nature, a block-multiplexed bus due to the
overhead involved in addressing various
devices to talk and listen This overhead is
less bothersome if it only occurs once for a
large number of data bytes (once per block).
This mode of operation matches the needs of
microcomputers and most of their peripher—
als. Because of block mulitiplexing, the bus
works best with buffered memory devices
and/or devices which have the capability of
operating with Direct Memory Access
(DMA).

Interrupt Driven —— Many types of interrupt
systems exist, ranging from complex, fast,
vectored/priority networks to simple polling
schemes. The main tradeoff is usually cost
versus speed of response. The GPIB has two
interrupt protocols to help span the range of
applications. The first is a single service
request (SRQ) line that may be asserted by
all interrupting devices. The controller then
polls all devices to find out which wants
service. The polling mechanism is well de-
fined and can be easily automated. For high-
er performance, the parallel poll capability
in the |[EEE 488 allows up to eight devices to
be polled at once ~-= each device is assigned
to one bit of the data bus. This mechanism
provides fast recognition of an interrupting
device. A drawback is the frequent need for
the controller to explicitly conduct a paral-
lel poll, since there is no equivalent of the
SRQ line for this mode.

Direct Memory Access (DMA) — In many
applications, no immediate processing of 1/O
data on a byte-by-byte basis is needed or
wanted. In fact, programmed transfers slow
down the data transfer rate unnecessarily in
these cases, and higher speed can be
obtained using DMA. With the GPIB, one
DMA facility at the controller serves all
devicess There is no need to incorporate
complex logic in each device.

Asynchronous Transfers —— An asynchronous
bus is desirable so that each device can
transfer at its own rate. However, there is
still a strong motivation to buffer the data at
each device when used in large systems in
order to speed up the aggregate data rate on
the bus by allowing each device to transfer
at top speed. The GPIB is asynchronous and
uses a special 3-wire handshake that allows
data transfers from one talker to many
listenerse.

1/0O To I/O Transfers —— In practice, 1/O to
1/O transfers are seldom done due to the
need for processing data and changing
formats or due to mismatched data rates.
However, the GPIB can support this mode of
operation where the microcomputer is nei-
ther the talker nor one of the listeners. In
this mode of operation, the transfer rate is
determined by the operational speed of the
devices.

GPIB/IEEE 488 Overview

GPIB SIGNAL LINES

Data Bus

The lines DIO1 through D108 are used to
transfer addresses, control information and
data. The formats for addresses and control
bytes are defined by the IEEE 488 standard.
Data formats are undefined and may be
ASCI!l (with or without parity) or binary.
D101 is the Least Significant Bit (note that
this will correspond to bit 0O on most
computers).

DEVICE A (_[_LLJ_LM

ABLE TO ’
TALK, LISTEN,
A

DATA BUS

NI
CONTROL
(0.9. comp

=

DEVICE 8

ABLETO | 7 T
TALK AND
UISTEN
)

(e.9. digital |
)

OEVICE C <

ONLY ABLE [—9
TO LISTEN

(0.9. uignat
9)

QATA BYTE

,,_.51 | CONTAOL

.<
F
>
z
5
b
m
=,

INTERFACE
MANAGEMENT

I

DEVICE O

|
|
“ GENERAL
|
|
i

ONLY ABLE ——2
TO TALK

\
]
|

/

e

(e.9. countes)

i

00 1...(OATA
INPUT/OUTPUT)

DAV (DATA VALID)
NAFD (NOT READY FOR OATA)
NDAC (NOT DATA ACCEPTED)

{FC (INTERFACE CLEAR)}
ATN (ATTENTION)

SRQ (SERVICE AEQUEST)
REN (REMOTE ENABLE)
EOI (END-OR-IDENTIFY)

Figure 56. GPIB Interface Capabilities

and Bus Structure.

Management Bus

ATN — Attention. This signal is as-
serted by the Controller to indicate thatitis
placing an address or control byte on the
Data Bus. ATN is deasserted to allow the as-
signed Talker to place status or data on the
Data Bus. The Controller regains control by
reasserting ATN; this is normally done
synchronously with the handshake to avoid
confusion between control and data bytes.

EOI — End or Identify. This signal has
two uses as its name implies. A talker may
assert EQOI simultaneously with the last byte

61

zSBX 20 Multimodule Manual

of data to indicate end of data. The Con-
troiler may assert EQI along with ATN to
initiate a Parallel Poll. Although many
devices do not use Parallel Poll, all devices
should use EOI to end transfers (many cur-
rently available ones do not).

SRQ =-- Service Request. This line s
like an interrupt: it may be asserted by any
device to request the Controller to take
some action. The Controller must determine
which device is asserting SRQ by conducting
a Serial Poll at its earliest convenience. The

requesting device deasserts SRQ when
polled.
IFC —— Interface Clear. This signal is

asserted only by the System Controller in
order to initialize all device interfaces to a
known state. After deasserting IFC, the
System Controller is the active controller of
the system.

REN — Remote Enable. This signal is
asserted only by the System Controller. Its
assertion does not place devices into Remote
Control mode; REN only enables a device to
go remote when addressed to listen. When in
Remote, a device should ignore its front
panel controls.

Transfer Bus

oo -].---(I-
o' L L[
. m r—l

L —

H—
NDAC | I

1

GPIB Handshake Sequence.

Figure 57.

NRFD —— Not Ready For Data. This hand-
shake line is asserted by a listener to
indicate it is not yet ready for the next data
or control byte. Note that the Controller
will not see NRFD deasserted (i.e.ready for

data) wuntil all devices have deasserted
NRFD.
NDAC -- Mot Data Accepted. This hand-

shake line is asserted by a Listener to

62

. Listeners (analogous to

indicate it has not yet accepted the data or
control byte on the DIO lines. Note that
the Controller will not see NDAC deasserted
(iee. data accepted) until all devices have
deasserted NDAC,

DAV — Data Valid. This handshake line is
asserted by the Talker to indicate that a
data or control byte has been placed on the
D10 lines and has had the minimum specified
settling time.

GPIB INTERFACE FUNCTIONS

There are 10 interface functions specified
by the IEEE 488 Standard. Not all devices
will have all functions and some may only
have partial subsets. The ten functions are
summarized below with the relevant section
number from the |IEEE document given at the
beginning of each paragraph. For further
information please see the |IEEE Standard.

1. SH -~ Source Handshake (section 2.3)
This function provides a device with the
ability to properly transfer data from a
Talker to one or more Listeners using the
three handshake lines.

2. AH — Acceptor Handshake (section 2.4)
This function provides a device with the
ability to properly receive data from the
Talker using the three handshake lines. The
AH function may also delay the beginning
(NRFD) or end (NDAC) of any transfer.

3. T —— Talker (section 2.5) This function
allows a device to send status and data bytes
when addressed to talk. An address consists
of one (Primary) or two (Primary and Sec-
ondary) bytes. The latter is called an ex-—
tended Talker.

4. L — Listener (section 2.6) This function
allows a device to receive data when ad-
dressed to listen. There can be extended
extended Talkers
above).

5. SR ——Service Request (section 2.7) This
function allows a device to request service
from the Controller (interrupt). The SRQ
line may be asserted asynchronously.

6. RL — Remote Local (section 2.8) This
function allows a device to be operated in
two modes: Remote via the GPIB or Local
via the manual front panel controls.

7. PP — Parallel Poll (section 2.9) This
function allows a device to present one bit
of status to the Controller-in~-charge. The
device need not be addressed to taik and no
handshake is required.

8. DC -~ Device Clear (section 2.10) This
function allows a device to be cleared
(initialized) by the Controller. Note that
there is a difference between the DC and the
IFC lines.

9. DT — Device Trigger (section 2,11)
This function allows a device to have its
basic operation started either individually or
as part of a group. This capability is often
used to synchronize several instruments.

10 C -- Controller (section 2.12) This
function allows a device to send addresses,
as well as universal and addressed commands
to other devices. There may be more than
one controller on a system, but only one may
be the controller-in-charge at any one time.

At power—on time the controller that is pro-
grammed to be the System Controller becomes
the active controller-in-charge. The System
Controller has several unique capabilities
including the ability to send: (1) Interface
Clear (IFC) - clears all device interfaces
and returns control to the System Control-
ler)e (2) Remote Enable (REN) - allows
devices to respond to bus data once they are
addressed to listen) The System Controller
may optionally Pass Control to another con-
troller, if the system software has the
capability to do so.

GPIB CONNECTOR

The GPIB connector is a standard 24-pin in-
dustrial connector such as Cinch or Amphe-
nol series 57 Micro~Ribbon. The IEEE Stan~
dard specifies this connector, and the signal
connections and the mounting hardware. The
cable has 16 signal lines and 8 ground lines.
The maximum length is 20 meters with no
more than two meters per device (This last
number is the average over all the bus).

GPIB/IEEE 488 Overview

SHIELD
ATN
SRQ
IFC
NDAC
NRFD
DAV
EOI
Dlo4
DI03
Dl02
Dio1

Figure 58. GPIB Connector.

GPIB SIGNAL LEVELS

The GPIB signals are all TTL compatible, low
true signals. A signal is asserted (true) when
its electrical voltage is less than 0.5 volts
and is deasserted (false) when it is greater
than 2.4 volts. Be careful not to become
confused with the two handshake signals,
NRFD and NDAC which are also low true
(iees, < 0.5 volts implies the device is Not
Ready For Data).

GPIB MESSAGE PROTOCOLS

The GPIB is a very flexible communications
medium and as such has many possible varia-
tions of protocols. To bring some order to the
situation, this section will discuss a protocol
similar to the one used by Ziatech!s ZT 85
GPIB controller for Intel's MULTIBUS®
computers.

DATA — Transfer a block of data from
device A to devices B, C...
1. Device A Primary (Talk) Address
Device A Secondary Address (if any)
2. Universal Unlisten
3. Device B Primary (Listen) Address
Device B Secondary Address (if any)
Device C Primary (Listen) Address

63

zSBX 20 Multimodule Manual

4. First Data Byte
Second Data Byte

Last Data Byte (EOI)
5. Null

TRIGR — Trigger devices A, B,...to take
action

1. Universal Unlisten

2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.

3. Group Execute Trigger

4. Null

PSCTL — Pass control to device A
1. Device A Primary (Talk) Address
Device A Secondary Address (if any)
2. Take Control
3¢ Null

CLEAR — Clear all devices
1. Device Clear
2. Null

REMAL — Remote Enable
1. Assert REN continuously

GOREM — Put devices A, B,...into Remote

1. Assert REN continuously

2, Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.

3. Null

@OLOC — Put devices A, B,...into Local

1. Universal Unlisten

2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)

3. 7~ to Local

4. Null

64

LOCAL — Reset all devices to Local
1. Stop asserting REN

LLKAL — Prevent all devices from return-
ing to local
1. Local Lock Qut
2. Null

SPOLL — Conduct a serial poll of devices
A, B,...

1. Universal Unlisten

2. Serial Poll Enable

3. ZT 85 Primary (Listen) Address

4. Device Primary (Talk) Address
Device Secondary Address (if any)

5. Status byte from device

6. Go to Step 4 until all devices on
list have been polled

7. Serial Poll Disable

8¢ Null

PPUAL — Unconfigure and disable Parallel
Poll response from all devices

1. Parallel Poll Unconfigure
2. Null

ENAPP — Enable Parallel Poll response in
devices A, B,...

1. Universal Unlisten

2. Device Primary (Listen) Address
Device Secondary Address (if any)

3. Parallel Poll Configure

4. Parallel Poll Enable

5. Go to Step 2 until all devices on
list have been configured.

6. Null

DISPP — Disable Parallel Poll response
from devices A, B,...

1. Universal Unlisten

2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.

3. Parallel Poll Configure

4. Parallel Poll Disable

5. Null

IR EEREERE R E R R E R R R R E R R R E R R E R R E R R R R R R R R R R E R R R R R R R R R R R R R R R R R E R R E R IR L EEE R EER E ¥

. x % APPEND | X *
, DEBUGGING THE GPIB R LLE AR

IR EEEREEEEEEEEREE R R R E R E R R EE R R E R

DEBUGGING THE GPIB

The GPIB is a flexible interface that allows
variations in protocol. A visual indication of
GPIB activity from an inexpensive bus analy-
zer is very useful.

The ZT 488 is a cost effective GPIB analy-
zer. The ZT 488 monitors the bus while
stepping through bus transactions one at a
time. This allows the user to observe system
operation, including device addressing,
multiline commands, control lines and data.

The ZT 488 can simulate a missing device.
This can help you check out the system soft—
ware before the missing system device is
installed.

The ZT 488 can also simulate a controller.
This allows you to test a new device or
debug a faulty device. '

Three ZT 488 analyzer configurations are
shown on the top of the next page. The
configuration at the top shows the ZT 488
being used as a single-stepping monitor of a
GPIB system. Next, the ZT 488 is shown emu-
lating a GPIB "device". The bottom shows
the ZT 488 emulating a GPIB controller.

The Ziatech Model 488 is the first truly low
cost, handheld GPIB Analyzer. It conforms
to the IEEE 488 specifications.

1 Easy to operate — automatic handshake or
single step mode.

2 Compact - fits easily into a tool box,
attache case, or on the lab bench.

3 Light Weight - under 1 pound.

4 Handheld, Portable - take it with you in
the lab or in the field.

5 Low Cost — own your own, so you will have
it when you need it most.

6 Reliable - all units burned in for 168 hours
@ 55°C.,

7 Easy Connection to System — uses standard
metric thread GPIB connector.

8 Rugged - case made of high-impact poly-
styrene.

9 Low Power - 2 Watts @ 5VDC or 14 Watts
@ 115V AC.

10 "Quick Reference" Back plate.

a8 z s

e &

f’.«"

AT BO sRAQ

*& ®u
hé ®n
o e

IFIZ REN NRFD NDOAC AV

ALITO

@@@@4@

‘*z—re:ch

OFfT LSTN Tacx

ZT 488 GRPIB ANALY IEM

65

zSBX 20 Multimodule Manual

WSS S U

ZT 488 DEVICE #1 DEVICE #N

ZSBX 20

This configuration allows the ZT 488 to single step the entire GPIB, monitor the
GPIB, or act as a controller or device. The analyzer may also request service from

ST

DEVICE #1 DEVICE #N

the controller.

zSBX 20 ZT 488

This configuration allows the ZT 488 to analyze the GPIB controller by single-
stepping the controller while checking address, data, and control signals.

U VS y

zSBX 20 ZT 488 DEVICE #1

DEVICE #N

This configuration allows the ZT 488 to analyze all GPIB devices by emulating the
controller while checking the device!s talk and listen features, along with scrial and

parallel polling.

66

I EEEEREEE R EEEEE R R R R E R R E R E R R R R R R R R R R R R E R R R R R R R ERE R R R E R EREER S

REMOTE MESSAGE

IR E R R R R EEREE R i R R R R E R R R R E R R R R R R R E R R R R R]

*

* GPIB

*

IEEE Standard 488-1978 lists all messages
capable of being sent (talk) or received
(listen) by an interface function, including
both the encoding required to send the
message and the decoding required to re-

LER R EE R B]

* * APPENDI X *
CODING * KERRKRKK R KKK

x X *
EER EER £ XL E X

Other symbols used in the remote message
coding are:

U =Uniline message
M = Multiline message

ceive ite The logical state of each bus line AC = Addressed Command
signal is specified in the following message AD = Address (talk or listen)
coding as 0, 1, Y or X, as follows: DD = Device Dependent
HS = Handshake
0 = logical zero UC = Universal Command
1 = logical one SE = Secondary
X = don't care (for received message) ST = Status
Y = don't care (for send message)
REMOTE MESSAGE CODING
Bus Signal Line(s) and
Coding That Asserts the
C True Value of the Message
T 1 D D NN
y a I I DRDAES I R
P s O O AFATORTFE
Mnemonic Message Name e s 87654321 VDCNI QCN
ACG addressed command group M AC Y9 900 XXXXXXX1XXXX
ATN attention u UC XXX XXXXXXXX1 XXXX
DAB data byte (Notes 1, 9) M DD DDDDDDDDXXX9 XX XX
8 765 43 21
DAC data accepted U HS X X XXX XXX XXp0XXXXX
DAV data valid U HS X XXX XXXXI1XX XX XXX
DCL device clear M UC Y? 901901909 XXX1XXXX
END end u ST X XX XX XXXXXX01 XXX
EOS end of string (Notes 2, 9) M DD EEEEEEEEXXX? XXXX
8 7654321
GET group execute trigger M AC Y9 00100990 XXX1XXXX
GTL go to local M AC YO0 0900001 XXX1XXXX
IDY identify U UC X XXX XXX XXXXX1 XXX
IFC interface clear U UC X XXX XXXXXXXXXX1X
LAG listen address group M AD Y9 1 X XXX XXXX1XXXX
LLO local lock out M UC Yo 0190001 XXX1XXXX
MLA my listen address (Note 3) M AD Y9 1 L L :I; 12.. % XXX1 XX XX
5 4
MTA my talk address (Note 4) M AD Y1 ¢ ’;‘ T ’;‘ ’;‘ ’f XXX1 XX XX
4
MSA my secondary address (Note 5) M SE Y11SS8SSS ? XXX1 XX XX
54 3 2
NUL null byte M DD 90 9 9 0 0 90 90 9 XXXXX XXX
OSA other secondary address M SE (OSA=SCG A MSA)
OTA other talk address M AD (OTA=TAGA MTA)
PCG primary command group M — (PCG = ACG V UCG V LAG V TAG)
PPC paraliel poll configure M ACY? 0090101 XXX1XXXX
PPE parallel poll enable (Note 6) M SE Y1190 S l; g ll’ XXX1 X XXX
PPD parallel poil disable (Note 7) M SE Y111 4D ? 12) 11) XXX 1 XXXX

67

zSBX 20 Multimodule Manual

REMOTE MESSAGE CODING (CONTINUED)

Bus Signal Line(s) and
Coding That Asserts the

C True Value of the Message

T 1 D D NN
y a 1 I DRDAE S I R
P s O O AFATORFE
Mnemonic Message Name e s 876 54321 VDCNI QCN
PPR1 parallel poll response 1 U STXXXXXXX1 XXX11XXZX
PPR2 parallel poil response 2 U ST XXX XXX1X xXxXx11XxxXxX
PPR3 parallel poll response 3 (Note 10) U ST X XXXX1XX XXX11XXX
PPR4 parallel poll response 4 U ST X X XX1 XXX XXX11XXX
PPR5 parallel poll response 5 U ST X X X1 XXXX XXX11XXX
PPR6 parallel poll response 6 0] ST X X1 XXXXX XXX11XXX
PPR7 nparallel poll response 7 (Note 10) U ST X1 XXXXXX XXX11XXX
PPR8 parallel poll response 8 U ST 1 XXX XXXX XXX11XXX
PPU parallel poll unconfigure M UCYP 91900101 XXX1XXXX
REN remote enable U UCXXXXXXXX XXXXXXX1
RFD ready for data U HS X XXX XXXX XXXXXXX
RQS request service (Note 9) 8] ST X1 XXX XXX XXX¢9XXXX
SCG secondary command group M SE Y11 XXXXX XXxX1XXXX
SDC selected device clear M ACYDP 00901909 XXX1XXXX
SPD serial poll disable M UC Y9 91190901 XXX1XXXX
SPE serial poll enable M UC Yo p1l119000 XXX1XXXX
SRQ service request U ST X XXX XXXX XXXXX1XX
STB status byte (Notes 8, 9) M ST S XS SSSSS XXX0XXXX

8 6 54 3 21

TCT take control M AC Y9 90910901 XXX1XXXX
TAG talk address group M AD Y1 9 XXXXX XXX1XXXX
UCG universal command group M UC YP9 91 XXXX XXX1XXXX
UNL unlisten M AD Y9 111111 XXX1XXXX
UNT untalk (Note 11) M AD Y1 9011111 XXX1XXXX

The 1/9 coding on ATN when sent concurrent with multiline messag

tive convenience.

NOTES:

(1) D1-D8 specify the device dependent data bits.

(2) E1-E8 specify the device dependent code used to
indicate the EOS message..

(38) L1-L5 specify the device dependent bits of the
device’s listen address.

(4) T1-T5 specify the device dependent bits of the
device’s talk address,

(5) S1-S5 specify the device dependent bits of the de-
vice’s secondary address.

(6) S specifies the sense of the PPR,

S Response
'] 1]
1 1

P1-P3 specify the PPR message to be sent when a paral-
lel poll is executed.

68

has been added to this revision for interpre-

P3 P2 P1 PPR Message
[] [} [} PPR1
11 1 PPRS

(7) D1-D4 specify don’t-care bits that shall not be
decoded by the receiving device. It is recommended
that all zeroes be sent.

(8) S1-S6, S8 specify the device dependent status.
(DIO7 is used for the RQS message.)

(9) The source of the message on the ATN line is
always the C function, whereas the messages on the
DIO and EOI lines are enabled by the T function.

(10) The source of the messages on the ATN and EOI
lines is always the C function, whereas the source of
the messages on the DIO lines is always the PP func-
tion.

(11) This code is provided for system use, see 6.3.

The following pages illustrate example GPIB controller drivers for a board utilizing the
TMS 9914A. This code is written in 8085 Assembly language and is provided as a model for
writing your code. If you are using a different processor, this code will have to be modified
for your application. -

ASM8¢

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0

:F1:85V1.SRC

MODULE PAGE 1

*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

0340
0040
@50
20258
0058
Ja5A
@B 5A
@ascC
QO 5E

0001
0019
0202
0020
00490
2080

OBJ

L T | A 1 I T |

[

SEQ

WO JOoOut b WN

STITLE

SOURCE STATEMENT

(**** DRIVERS FOR ZT 85/38 CONTROLLER ***')

SPAGEWIDTH (89)
SMACROFILE

°
1
.
’
.
’

.
’

°
’

Se N6 Se Se Se SO /) SE S8 S0 Ne S0 S0 Se S8 S0 Np Se S S ~p So ~g ~o

BASE
PRT17
PRT14
INTR
INTRS
EOSR
MDAR
SREST
LEDS

EOSE
EOSC
EOIM
EOIC
EOSIC
EOSIPC

~eo “~o

DRIVER PRCGRAM FOR ZIATECH'S 2T 85/38 L(E-BE =
INTERFACE BOARD FOR THE INTEL MULTIRBUS USED
IN CONJUNCTION WITH AN MULTIRIUS COMPATIRLE
CPU CAPABLE OF EXECUTING 808J TYPECODE.
THIS PROGRAM IS VERSION 1 AND DOES NOT
DMA OR INTERRUPTS WHILE DRIVING THE 9914 IN
A CONTROLLER CONFIGURATION.

CSE

WRITTEN BY ALAN BEVERLY
2/4/82 1300 HOURS
ZIATECH CORPORATION

SAN LUIS OBISPO, CA 93401

Khkkhkhkhkhkkhkkhkhkkrhkkhkhkhkhbhkhkhhkhkkhkhbkhkhkhkhkkhkhkhkhhkhkhkkhkhkhkkhkkkktk

GENERAL CONTROIL VALUES

khkhkkhkhkhkhkhkdkhhkhkhkhkhkhkhkhkhkkkhkhkhkhkhkkhkkkhkhkhkhkdkkkhhkkhkkhkkdhkrhkkkxkkrhs

INCLUDE (:F1:EQU85.SRC)

ZT 85/38 HARDWARE VALUES

PORT SELECTIONS

EQU 40@H ; @ BASE PORT SELECTION
EQU BASE+@@H; @ 9517 BASE PORT % (R/W)
EQU BASE+10H; @ 9914 BASE PORT # (R/W)
EQU BASE+18H; @ INTERRUPT ENABLE (W)
EQU BASE+18H; @ INTERRUPT STATUS (R)
EQU BASE+1AH; @ EOS COMPARE (W)

EQU BASE+1AH; @ GPIB ADDRESS SWITCH (R)
EQU BASE+1CH; @ SOFTWARE RESET (W)

EQU BASE+1EH; @ LED SELECT PORT (W)
INTERRUPT ENABLE EQUATES

EQU @1H ; @ ENABLE EOS COMPARE
EQU 10H ; @ DISABLE EOS COMPARE
EQU @2H ;: @ ENABLE EOI INTERRUPT
EQU 20H ; @ DISABLE EOI INTERRUPT
EQU 40H ; @ EOS+EOI F/F CLEAR

EQU 80H ; @ EOS+EOI+EOP F/F CLEAR

INTERRUPT MASK EQUATES

ISIS-I1I 808@/8385 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC OBJ

0020
0049
3080

2031
o110
2002
0020

2350
0250
2080
0040
2020
2010
0308
0034
Q0032

0251
0051
0980
0040
0029
0010
0228
0004
0od2
0001

00352
0080
0249
@020
2010
go8
0od4
0002
0201

2053
08w
0049
2920

i

T L T | 1 (I

1 (| (| | T 1 | | I I

| T T I T |

SEQ

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
89
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
9o
99

100

101

192

103

104

195

106

107

I14M
EOSIM
EOSIPM
LEDIE
LED1D
LED2E
LED2D

EQU
EQU
EQU

LED
EQU
EQU
EQU
EQU

SOURCE STATEMENT

20H :
40H :
80H :

ENABLE EQUATES

J1H ;
10H :
@2H :
20H ;

SINCLUDE (:F1:EQU1l4.SRC)

’
.
’
-
’
.
’

.
I

INTQ
INTMO
INTRO
INTRI1
BIM
BOM
EOIM@
SPASM
RLCM

-
’

INT1
INTM1
GETM
ERRM
UCGM
APTM
DCASM
MAM
SRQM
IFCM

-
’

ADRST
REMM
LLOM
ATNM
LPASM
TPASM
LADSM
TADSM
ULPAM

BUSTR
ATNMB
DAVM

NDACM

MODULE PAGE 2

9914 INTERRUPT MASK
EOS+EOI INTERRUPT MASK

EOS+EOI+EOP F/F MASK

ENABLE LED#1 FOR TALK
DISABLE LED#1

ENABLE LED#2 FOR LISTEN
DISABLE LED#2

9914 CONTROL VALUES

REG #@ INTERRUPT REG. @ CONSTANTS (R/W)

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

PRT14+9 ;
PRT14+@ ;
80H :
40H :
20H H
10H I
J8H :
J4H :
@2H :

INTERRUPT REG. @
INTERRUPT REG 0

REG @ INTERRUPT MASK
REG 1 INTERRUPT MASK
BYTE IN MASK

BYTE OUT MASK

EOI MASK

SERIAL POLL MASK
REMOTE/LOCAL CHANGE

REG #1 INTERRUPT REG. 1 CONSTANTS (R/W)

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

REG
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

REG
EQU
EQU
EQU
EQU

PRT14+1
PRT14+1
80H

40H

20H :
19H :
A 8H :
J4H :
J2H :
@1H :

~e N0 g So

INTERRUPT REG 1

INTERRUPT MASK REG. 1
GROUP EXECUTE TRIGGER
INCOMPLETE HANDSHAKE.
UNIDENTIFIED COMMAND
ADDRESS PASS THROUGH
DEVICE CLEAR STATE

(MLA OR MTA) AND NOT SPMS
SERVICE REQUEST

INTERFACE CLEAR MASK

#2 ADDRESSS STATUS (R)

PRT14+2 ;
80H :
40H :
20H :
190H :
Jd8H :
B4H :
J2H :
J1H :

#3 BUS STATUS
PRT14+3
80H
40H
20H

~e o ~o Seo

ADDRESS STATUS REGISTER
REMOTE ENABLE MASK
LOCAL LOCKOUT MASK
ATTENTION STATUS

PRI. LISTEN ADDRESSED
PRI. TALK ADDRESSED
LISTEN ADDRESSED

TALK ADDRESSED

LSM OF LAST ADD. REC.

(R)

GPIB STATUS REGISTER
ATTENTION STATUS

DATA VALID STATUS

NO DATA ACCEPTED STATUS

ISIS-I1 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 3
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC OBJ

Q019
Qoa8
Q004
Q002
0001

0253
g8
Qa7F

0080
2000
0001
go1
0281
0083
0033
0284
P24
0286
0036
0287
0aa7
2289
naa9
ga8A
151555\
J08E
QI QOE
Q08F
JO0F
194}
Q010
0093
@313
Pad95
@315
@296
0016
@0a17
2@97
@018
2298

2002
@od5
0008
@a20B
2o ecC
009D
2011
012

W n i uwn

1 O {1 T T R TR O

nwnow oo

o unu

LI [I TR T

o

SEQ

198
189
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
l6@
161
162

NRF DM
EOIMK
SROMM
IFCMB
RENM

.
'

AUXCMD
SETM
CLRM

’

RESET
RSTCLR
DACR
IVASR
VSADR
HDFA
HDACLR
HDFE
HDECLR
FGET
FGTCLR
RTL
RTLCLR
LON
LONCLR
TON
TONCLR
RPP
RPPCLR
SIC
SICLR
SRE
SRECLR
DAI
DAICLR
STDL
STDCLR
SHDW
SHDCLR
VSTDL
VSTCLR
RSV2S
RSV2C

.
?

RHDF
NBAF
FEOI
GTS
TCA
TCS
RQC
RLCT

SOURCE STATEMENT _

NOT READY FOR DATA

EQU 19H ;

EQU J8H ; END OR IDENTIFY

EQU 04H ; SEVICE REQUESTED

EQU J2H ; INTERFACE CLEAR STATUS

EQU Jg1lH ; REMOTE ENABLED STATUS

REG #3 AUXILIARY COMMAND REGISTER (W)

EQU PRT14+3 ; AUX. CMD. RECISTER

EQU 80H ; CLEAR/SET OPERATION (SET)
EQU 7FH ; CLEAR/SET OPERATION (CLEAFR

SET/RESET COMMANDS

EQU 80H ; CHIP RESET

EQU @aH ; STOP RESET -
EQU @1H ; RELEASE ACDS HOLDOFF
EQU 214 ; INVALID SECONDARY ADD
EQU 81H ; VALID SECONDARY ADD

EQU 83H ; HOLDOFF ON ALL DATA

EQU @3H ; RELEASE HOLDOFF ON ALL~—
EQU 84H ; HOLDOFF ON EOI ONLY

EQU J4H ; RELEASE HOLDOFF ON EOI

EQU 86H ; FORCE GROUP EXECUTE TRIGGE
EQU @6H ; STOP GROUP EXECUTE TRIGGEF
EQU 87H ; RETURN TO LOCAL

EQU @7H ;: DON'T RETURN TO LOCAL —
EQU 89H ;: LISTEN ONLY

EQU @9H ; RESET LISTEN ONLY

EQU 8AH : TALK ONLY

EQU @AH : RESET TALK ONLY

EQU 8EH ; REQ. PARALLEL POLL

EQU OEH ; RESET PARALLEL POLL

EQU 8FH ; SEND IFC

EQU OFH ; RESET INTERFACE CLEAR

EQU 90H ;: SEND REM

EQU 10H ; RESET REM

EQU 93H ; DISABLE ALL INTERRUPTES™
EQU 13H ; ENABLE ALL INTERRUPTS

EQU 95H : SET T1 DELAY

EQU 15H ; RESET T1 TIMER

EQU 96H ; SHADOW HANDSHAKE

EQU 16H ; RESET SHADOW HANDSHAKEFE ™
EQU 17H ; SET FAST T1 DELAY

EQU 97H ; RESET FAST T1 DELAY

EQU 18H : SERVICE REQUEST #2

EQU 98H ; CLEAR SR #2

PULSE TYPE COMMANDS

EQU @2H RELEASE RFD HOLDOFF

EQU U5H SUPPRESS BYTE SENT

EQU 28H ; SEND EOI WITH NEXT BYTE

~e ~e

EQU 2BH ; GO TO STANDBY =
EQU @CH ; TAKE CONTROL ASYNCH.

EQU 0DH ; TAKE CONTROL SYNCH.

EQU 11H ;: REQUEST CONTROL

EQU 12H RELEASE CONTROL

ISIS-I1 898@/8085 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC OBJ

0214

2054
0089
0040
0320
goed

2055
o440

0056

2356

8as57

B@57

0229
P04
@@ 3F
QO 5F
29914
2008
gal11l
20235
0270
Po6d
2015
204
0o19
2018
2039

nn

hu

nou

1 | O [(O

Wl w8 on

1 | I | I | I T I

nnn

SEQ

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

MLA
MTA
UNL
UNT
DCL
GET
LLO
PPC
PPD
PPE
PPU
SDC
SPD
SPE
TCT

SEJECT

SOURCE STATEMENT

EQU

REG
EQU
EQU
EQU
EQU
EQU

REG
EQU
EQU

REG
EQU

REG
EQU

REG
EQU

REG
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

#4

#5

#6

#6

#7

#7

14H

MODULE PAGE 4

; PASS THROUGH NEXT SECONDAR?

ADDRESS REGISTER (W)

PRT14+4

80H
40H
20H

DAL+DAT

; 9914 ADDRESS REGISTER
; EN. DUAL PRI. ADD. MODE
; DISABLE LISTEN MODE

; DISABLE TALK MODE

; DIS. BOTH TALK & LISTEN

SERIAL POLL REGISTER (W)

PRT14+5

404

; SERIAL POLL REGISTER
; REQUEST SERVICE

COMMAND PASS THROUGH (R)

PRT14+6

; COMD. PASS THROUGH

PARALLEL POLL REGISTER (W)

PRT14+6

; PARALLEL POLL REG.

DATA IN REGISTER (R)

PRT14+7

; DATA IN REGISTER

DATA OUT REGISTER (W) .

PRT14+7

; DATA OUT REGISTER

GPIB COMMANDS

20H

40H
3FH
5FH
14H
@8H
111
@ 5H
70H
60H
15H
@4H
19H
18H
J9H

MY LISTEN ADDRESS

MY TALK ADDRESS
UNIVERSAL UNLISTEN
UNIVERSAL UNTALK
DEVICE CLEAR

GROUP EXECUTE TRIGGER
LOCAL LOCK OouT

PAR POLL CONFIGURE
PAR POLL DISABLE

PAR POLL ENABLE

PAR POLL UNCONFIGURE
SELECTED DEVICE CLEAR
SERIAL POLL DISABLE
SERIAL POLL ENABLE
TAKE CONTROL

e N4 NE Ne S0 Ng N0 Ng S0 np So o~

~e

~ ISIS-II 8080/89¢85 MACRO ASSEMBLER,

V2.9

*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LoC OBJ

o

| I (|

LT | T T I T 1

1 T I I T T T 1

SEQ

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

SOURCE STATEMENT

SINCLUDE (:F1:MACRO.SRC)

’
-
’
.
’
-
’
.
’
-
,
-
’
.
’
.
’
.
’
°
‘
-
’
.
’

NOTE: ALL MACROS DESTROY THE ACCUMULATOR. ALL
OTHER REGISTERS ARE PRESERVED.
SETF SETS FLAGS ON ACCUMULATOR
ETF MACRO
ORA A
ENDM
: WAITI WAITS FOR A BYTE INPUT)
WAITI MACRO
LOCAL WAITL
WAITL: IN INTQ ; GET INT@ STATUS
ANI BIM ; CHECK FOR BYTE IN
JZ WAITL ; WAIT UNTIL IT IS -
ENDM
: WAITO WAITS FOR BYTE OUT
WAITO MACRO
LOCAL WAITL
WAITL: 1IN INTO ; GET INTO STATUS
ANI BOM ; CHECK FOR BYTE OUT
JZ WAITL ; WAIT UNTIL IT IS
ENDM
: CMD SENDS A GIVEN MESSAGE TO THE AUXCMD REG
CMD MACRO CMMD
MVI A,CMMD ; GET COMMAND -
ouT AUXCMD ; SEND TO AUXCMD REGISTI
ENDM
: RANGE JUMPS TO LABEL IF MEM. LOWER OR GREAT.
RANGE MACRO LOWER, UPPEK, LABEL
MOV A,M ; GET VALUE TO CHECK
CPI LOWER ; < OR = TO LOWER
JM LABEL
CPI UPPER+1 ; > OR = TO UPPER)
JP LABEL)
ENDM

~e o

DELAY WILL WAIT A

MODULE

PAGE 5

khkhkhkhkhkkhkhhhkkkhkhkhkhkhkhhhkkhkhhkhkkhkdhkhkhkkhkdthkdhkhikkhkhkhkhkdkhkhkh k>

MACRO DEFINITIONS

khkkhkhkhkkhkhkkhhkhkkhkhkhkhkhhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhhhkhkhkhhkhkkkhkkkk:

GIVEN AMOUNT OF TIME IN

; MICROSECONDS ASSUMING A CLOCK OF 320N

ISIS-I1 8080/8985 MACRO ASSEMBLER, V2.0 MODULE PACE 6

+* ~ZT{TSS TCR ZT 23738 CONTROLLER *
LOC OBJ SEQ SOURCE STATEMENT
= 262 ; MAXIMUM DELAY IS 500MS.
= 263 :
= 264 DELAY MACRO USEC
= 265 LOCAL WAITL
= 266 PUSH B : SAVE B
= 267 LXI B,USEC*3/23
= 268 WAITL: DCX B ; COUNT DOWN
= 269 MOV A,C ;: TEST FOR END
= 279 ORA B
= 271 JNZ WAITL
= 272 POP B ; RESTORE B
= 273 ENDM
= 274 ;
= 275 ; ZERO WILL TEST A 16 BIT COUNTER FOR ZERO
= 276 ; THAT IS CONTAINED IN REGISTERS BC
= 277 ;
= 278 ZERO MACRO TDEST
= 279 MOV A,C : GET C REG
= 280 ORA B : TEST WITH B .
= 281 JZ TDEST ; ZERO SO JUMP
= 282 ENDM
= 283 :
= 284 ; TALK CONTROLS LED #1 AS AN INDICATION
= 285 ; OF GPIB TALK ACTIVITY
= 286 ;
= 287 TALK MACRO LED1
= 288 MVI A,LED1 ; @ LOAD LED STATUS
= 289 ouT LEDS ; @ SEND TO LED PORT
= 290 ENDM
= 291 ;
= 292 ; LISTEN CONTROLS LED #2 AS AN INDICATION
= 293 ; OF GPIB LISTEN ACTIVITY
= 294 ;
= 295 LISTEN MACRO LED2
= 296 MVI A,LED2 ; @ LOAD LED STATUS
= 297 QuUT LEDS ; @ SEND TO LED PORT
= 298 ENDM
= 299 ;
= 300 ; CLRA WILL ZERO OUT THE ACCUMULATOR
= 301 ;
= 302 CLRA MACRO
= 303 XRA A ; ZERO ACCUMULATOR
= 304 ENDM
305 ;

306 SEJECT

ISIS-I1 808@/8¢85 MACRO ASSEMBLER, V2.0 MODULE PAGE 7
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

5000

3EQQ

00a1

OBJ SEQ

387
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

N0 Ng N0 o N0 m~g So o~

Se N Ne se No S0 s Se N Se So Ne Se ~e e “e [yf Se ~e S 1 ~e ~o e

SEJECT

SOURCE STATEMENT

IZEEEEE SRR SRR EREEE SRR SRR R EEE SR EREEEEESEEREEERESESESEEES

OPERATION OF SUBROUTINES

khkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkkhkhkdkhkhkhkhkkhkhhkkhkhkhhkhkhkkkkhidkkhkxkkhkkhkx

ALL ROUTINES HAVE BEEN ORIGINED AT:

ORG 5090H ; SYSTEM MEMORY

THE STACK POINTER WILL BE LOCATED AT:
EQU 3EQQH ; USER STACK AREA

WITH THE EOS CHARACTOR SAVED IN RAM AT:
DS @1H ; EOS CHARACTOR

ALL OF THE ROUTINES HAVE THESE COMMON AS-
SUMPTIONS ABOUT THE STATE OF THE TMS 99 Ul
ROUTINE AND WILL EXIT THE ROUTINE IN AN
IDENTICAL STATE WITHOUT REGARD TO THE ORDER
IN WHICH CALLED.

9914: BO IS OR HAS BEEN SET, ALL INTERRUP’
ARE MASKED OFF, TON MODE, NOT LA,
HOLDOFFS IN EFFECT OR ENABLED, NO
HOLDOFFS WAITING FOR FINISH COMMAND

ALL STATUS INFORMATION IS OBTAINED BY POL-
LING APPROPRIATE STATUS REGISTER. NO INTER
RUPTS AND NO DMA IS USED IN THIS VERSION.

ISIS-II 808@/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 8
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

5001
5093

5085
5037

5009
500A
500C

50 0E
5019

5012
5313
5016
5017
5018
5019
501C

5@81D
501F

5021
5023

5025
5027

5029
502B
502D
5030

OBJ

3E80
D353

3EQZQ
D353

AF
D350
D351

3E8F
D353

C5
218C@2
2B
79
B@
C21650
Cl

3EQF
D353

3E17
D353

3E8A
D353

DB52
E610
CA2959
C9

[T

wunnnn

L (| | | [O | O [[O 1

SEQ

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
3506+
357+
358
359+
360+
361
362+
363
364
365
366+
367+
368
369+
370+
371+
372+
373+
374+
375+
376
377+
378+
379
380+
381+
382
383+
384+
385
386+
387+
388+
389
390
391

SOURCE STATEMENT

SINCLUDE (:F1:INT14.SRC)

-
‘
.
’

hkhkkkhkhkhkhkhhkhkhkhkhkhkhkhhkkkrrhkkhkrhkhkhhkhhkhkhhkhkhhhkhkhkdkhkkdhkdhik

~s S0 ~eo

INITIALIZE 9914

IS EEEEERSEEEEEEE RS SRR R R RS R EEEEEEEEEEEEEEEESEEESSES

: INPUTS: NONE
: OUTPUTS: NONE
; CALLS: NONE
; DESTROYS: A,F/Fs
INIT: CMD RESET ; RESET 9914
MVI A,RESET ; GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
CMD RSTCLR
MVI A, RSTCLR : GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
CLRA
XRA A ; ZERO ACCUMULATOR
ouT INTMO ; DISABLE ALL MASK BITS
OUT INTM1
CMD SIC ; SEND IFC & TAKE CONTROL
MVI A, SIC ; GET COMMAND
OouT AUXCMD ; SEND TO AUXCMD REGISTER
DELAY 5000 : FOR 5 MILLISECONDS
PUSH B : SAVE B
LXI B, 500@0*3/23
?2?0001: DCX B : COUNT DOWN
MOV A,C ; TEST FOR END
ORA B
JINZ 2?0001
POP B ;: RESTORE B
CMD SICLR ; RESET IFC
MVI A,SICLR ; GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
CMD VSTDL ; SET FAST T1 MODE
MVI A,VSTDL ; GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
CMD TON ; TALK ONLY MODE
MVI A, TON ; GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
WAITO ; WAIT UNTIL THERE
?2?20002: IN INTO ; GET INT@ STATUS
ANI BOM ; CHECK FOR BYTE OUT
JZ 2?0002 ; WAIT UNTIL IT IS
RET

.
’

SEJECT

ISIS-II1 8080/8085 MACRO ASSEMBLER,
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LocC

5831
5@33
5035
5037

5039
503B
503D
5049
5042

5044
5045
5347
504A
5@4C

504F
5051
5053
5056
5@57
5059
50 5A

505D
505F

5061
5063

5065
5067
5069

5@6C
506D
50 6E

OoBJ

DB5A
E61F
re4g
D357

DB50
E610
CA3950
3E3F
D357

7E
FE20
FA5D50
FE3F
F25D50@

DB590
E610
CA4F50
7E
D357
23
C34459

3EOB
D353

3EQ1
D35E

DB5@
E610
CA6550

79
B
CA9C50

| T I 1

oo

1| T | | O T I

[I TR

Wl

SEQ

392

393 ;

394

395 ;

396 :

397 ;

398 ;

399 ;

= 400 ;

4@1 ; INPUTS:
4902 ;

493 ;

494 ;

405 ; OUTPUTS:
406 ; CALLS:

407 ; DESTROYS:
408 ;

499 SEND: IN
419 ANI
411 ORI
412 ouT
413 WAITO
414+2?20003: IN
415+ ANI
416+ JZ
417 MVI
418 ouT
419 SENDl: RANGE
420+ MOV
421+ CPI
422+ JIM
423+ CPI
424+ JP
425 WAITO
426+2?200034: IN
427+ ANI
428+ JZ
429 MOV
430 ouT
431 INX
432 JMP
433 SEND2: CMD
434+ MVI
435+ ouT
436 TALK
437+ MVI
438+ ouT
439 WAITO
44@+220005: IN
441+ ANI
442+ JZ
443 ZERO
444+ MOV
445+ ORA
446+ Jz

W

v2.0

SOURCE STATEMENT

SINCLUDE (:F1:SND14.SRC)

HL
DE
BC

MODULE

PAGE 9

LR R R R R SRS R ESEEEEESEEEEEEEESEEESE SRS S EEEEIEERESESEE

SEND ROUTINE

khkkkkkhkkhkkhkhkkkkhkhkkkhkhkhkhkhkhkAhkhkkhkhkdxhhkhkhkihhhkkhkhthkkhkkhkkkhx:

LISTENER LIST POINTER
DATA BUFFER POINTER
COUNT

@ WILL CAUSE NO DATA SEN"

EOS CHARACTER
DATA AT BUFFER POINTER DE

NONE

A,BC,DE,HL,F/FS

MDAR
1FH
MTA
DOUT

INTY
BOM
2?0003
A, UNL
DOUT
20H, 3EH,
A, M
20H
SEND2
3EH+1
SEND2

INTO
BOM
2?0004
A,M
DOUT

H
SENDI
GTS
A,GTS
AUXCMD
LED1E
A,LEDI1E
LEDS

INTQ
BOM
220005
SENDG6
A,C

B
SEND6

~0 ~e w0 ~o

U) S0 e ~s s Se

~

~e

e ~e ~e

~e w~p ~o =o

SO e Ne Ne Ne N8 Se S8 N S8 ne Se wg wp

~e

@ READ GPIB ADD DIP SW
@ GET GPIRBR ADDRESS
MTA TO DISABLE ANY TALKER!
PREVIOUSLY SENDING

GET INTO STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

SEND UNIVERSAL UNLISTEN
ouTpUT IT

END2 ; CHECK LISTENER LIt
GET VALUE TO CHECK
< OR = TO LOWER
> OR = TO UPPER

WAIT FOR PREVIOUS BO
GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

GET THIS LISTENER
OUTPUT TO .GPIR
INCREMENT LIST POINTER
LOOP UNTILL DONE

GO TO STANDBY

GET COMMAND

SEND TO AUXCMD REGISTER
@ ACTIVATE TALK LED .
@ LOAD LED STATUS

@ SEND TO LED PORT

FOR LAST LISTENER ADD.
GET INT@ STATUS

CHECK FOR. BYTE OUT .
WAIT UNTIL IT IS

TEST FOR ZERO COUNT

GET C REG |,

TEST WITH B

ZERO SO JUMP

ISIS-II 808@/8985 MACRO ASSEMBLER, V2.9
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LoC

5071
5074
5075
5076
5877
5978
507B
5@7¢C
587D
5080
5082

5083
5085
5087
508A

508D
5@8F
5091
5@92
5094

5095
5397
5099

589C
509E

50A0
50A2

50A4
50A6
50A8
50AB

OBJ

3AB050
oF

2B

79

B@
CA8D59
1A

BD
CA8D50
D357
13

DB5@
E610
CA8350
C37550

3E@8
D353
1A
D357
13

DB5@
E610Q
CA9550

3E@C
D353

3E19
D35E

DB50@
E610
CAA4509
co

nwon

1 | T | | I 1 A T 1

W wwunon

I

SEQ

447

448

449 SEND3:
459

451

452

453

454

455

456

457

458 SEND4:
459+2?20006:
460+

401+

462

463 SENDS5:
464+

465+

466

467

468

469
470+220037
471+

472+

473 SENDG6:
474+

475+

476

477+

478+

479
480+2?20008:
481+

482+

483

484 ;

485 SEJECT

SOURCE STATEMENT

LDA
MOV
DCX
MOV
ORA
JZ
LDAX
CMP
Jz
ouT
INX
WAITO
IN
ANI
Jz
JMP
CMD
MVI
OuT
LDAX
ouT
INX
WAITO
IN
ANI
JZ
CMD
MVI
ouT
TALK
MVI
ourT
WAITO
IN
ANI
JZ
RET

o)

’

> n

(@)

4

ENDS

COwnwrwHE™

SEND5
DOUT
D

INTO
BOM
220096
SEND3
FEOI
A, FEOI
AUXCMD
D

DOUT

D

INTO
BOM
220007
TCA

A, TCA
AUXCMD
LED1D
A,LED1D
LEDS

INTO
BOM
220008

~e ~¢ ~»

N0 S0 Ne Ne Ng S8 e Se ~o ~o

~e

~oe So <o ~e

-
’
.
’
.
’

MODULE PAGE 10

GET EOS

SAVE IT IN L
DECREMENT COUNT
TEST FOR LAST BYTE
TEST

YES, SEND EOI

GET DATA BYTE

IS IT EOS ?

IF CHAR = EOS, GO FINISH
OUTPUT TO GPIBR

INCR BUFFER POINTER

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

STILL MORE DATA

SEND EOI WITH EOS

GET COMMAND

SEND TO AUXCMD REGISTER
GET LAST BYTE

OUTPUT TO GPIB

FOR CONSISTENCY

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

TAKE CONTROL SYNCR.

GET COMMAND

SEND TO AUXCMD REGISTER
@ RESET TALK LED

@ LOAD LED STATUS

@ SEND TO LED PORT

GET INT@ STATUS
CHECK FOR BYTE OUT

WAIT UNTIL IT IS

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.9 MODULE PAGE 11
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOoC

50AC
5@AD
50AF
50B2
50B4
5@B7

50B9
50BB
50BD
50C@
50C2

50C4
508Ce6
50C8
50CB
5@CD
50CF
50D1

5@D3
50D5

5@D7
5@D9

5@DB
50DD

5@DF
50E1
5@E3

50E6
5QES8
50EA

OBJ

7E
FE40
FA2ES1
FESF
F22E51
D357

DB50
E610
CAB959
3E3F
D357

DB5d
E610
CAC450
DB5A
E6LF
F620
D357

3E83
D353

3E89
D353

3EQ2
D3 5E

DB52
E610
CADF59

3E@B
D353
210050

L (O | | | T | N T I

L | [| O O T I TR I

LI T T |

[

wnu

SOURCE STATEMENT _

SEQ

486 SINCLUDE (:F1:RCV14.SRC)

487 ;

488 ;

489 7***i
4909

491 ; RECEIVE ROUTINE

492 -

493 ;***i
494

495 ; INPUTS: HL TALKER RUFFER POINTER

496 ; DE DATA BUFFER POINTER

497 ; BC DATA COUNT (MAX RUFFER SIZE)
498 ; EOS CHARACTER

499 ; OUTPUTS: FILLS BUFFER POINTED AT BY DE

508 ; CALLS: NONE

501 ; DESTROYS: A,BC,DE,HL,F/FS

502 ;

533 RECV: RANGE 4@H, SEH, RECVS

504+ MOV A,M ; GET VALUE TO CHECK

505+ CPI 40H ;: < OR = TO LOWER

506+ IM RECVS

507+ CPI SEH+1 ; > OR = TO UPPER

508+ JP RECVS

509 ouT DOUT ; OUTPUT TALKER TO GPIB
5190 WAITO ; WAIT FOR BYTE OUT -
511+2?2@009: 1IN INTO ; GET INTY STATUS

512+ ANI BOM ; CHECK FOR BYTE OUT

513+ JZ 220039 ; WAIT UNTIL IT IS

514 MVI A, UNL ; STOP OTHER LISTENERS

515 ouT DOUT ; OUTPUT TO GPIB

516 WAITO ; WAIT FOR BYTE OUT
517+22001@: IN INTO ;s GET INTZ STATUS

518+ ANI BOM ; CHECK FOR BYTE OUT

519+ JZ 2?0013 ; WAIT UNTIL IT IS

520 IN MDAR ; @ READ GPIB ADDR DIP SW__
521 ANI 1FH ; @ GET GPIB ADDRESS

522 ORI MLA ; SEND TO GPIB

523 ° ouT DOUT ; OUTPUT TO GPIB

524 CMD HDFA ; HOLDOFF ON ALL DATA

525+ MVI A,HDFA ; GET COMMAND _
526+ ouT AUXCMD ; SEND TO AUXCMD REGISTEF
527 CMD LON ; LISTEN ONLY

528+ MVI A, LON ; GET COMMAND

529+ ouT AUXCMD ; SEND TO AUXCMD REGISTER
530 LISTEN LEDZ2E ; @ ENABLE LISTEN LED -
531 MVI A,LED2E ; @ LOAD LED STATUS

532+ ouT LEDS ; @ SEND TO LED PORT

533 WAITO ; WAIT FOR MTA

534+?2?20011: IN INTO ; GET INT@ STATUS

535+ ANI BOM ; CHECK FOR BYTE OUT a
536+ JZ 220011 ; WAIT UNTIL IT IS

537 CMD GTS ; GO TO STANDBY

538+ MVI A,GTS ;: GET COMMAND

539+ ouT AUXCMD ; SEND TO AUXCMD REGISTER
549 LXI H, EOS ; LOAD EOS ADDRESS

ISIS-II 8080/8985 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

[LOC

50ED
50EF
50F1
5@dr4
SOF6
5@F9
50FB
S50FC
50FD
SOFE
5101

5182
5103
5104

5187
5109
510B
510E
5110
5111
5112

I\ 5113
5115

5117
5119

511B
511D
511F

— 5122
5124

5126
5128

512A
512C
512E

OBJ

DB5@
E628
CAEDS5@
E608
C20E51
DB57
12

13

BE
CAl251
2B

79
B@
CAl351

3EQ2
D353
C3ED5d
DB57
12

13

@B

3E@D
D353

3E20
D35E

DB50
E610
CAl1B51

3E@2
D353

3E8A
D353

3E@3
D353
co

wwun

1 A T I T R

SEQ

541 RECV1:
542

543

544

545

546

547

548

549

550

551

552

553+

554+

555+

556

557+

558+

559

560 RECV2:
561

562

563 RECV3:
564 RECV4:
565+

566+

567

568+

569+

579
571+220012:
572+

573+

574

575+

576+

577

578+

579+

580

581+

582+

583 RECVS5:
584 ;

585 SEJECT

SOURCE STATEMENT

IN
ANI
Jz
ANI
JINZ
IN
STAX
INX
CMP
JZ
DCX
ZERO
MOV
ORA
Jz
CMD
MVI
ouT
JMP
IN
STAX
INX
DCX
CMD
MVI
ouT
LISTEN
MVI
ouT
WAITO
IN
ANI
Jz
CMD
MVI
ouT
CMD
MVI
ouT
CMD
MVI
ouT
RET

INTO :
EOIMK+BIM
RECV1
EOIMK
RECV?2
DIN

D

D

M

RECV3

B
RECV4
A,C

B
RECV4
RHDF

A, RHDF
AUXCMD
RECV1
DIN

D

D

B

TCS

A, TCS
AUXCMD
LED2D
A,LED2D
LEDS

~e Se we So ~p ~o

SO Ne N8 Ne N6 g SE Ng S8 g N8 Ne S0~y e =,

INTA

BOM
2?0012
RHDF

A, RHDF
AUXCMD
TON

A, TON
AUXCMD
HDACLR
A, HDACLR
AUXCMD

N8 SO N N6 SN N8 Ng e Ne S0 SNe Ne Ng S0 ~p

MODULE PAGE 12

GET INTERRUPT & STATUS
;s CHECK EOI OR BRI

WAIT UNTIL SET

CHECK FOR EOI

IF NOT EOI GET DATA

GET DATA

STORE IN DATA BUFFER

GET READY FOR NEXT BRYTE

IS IT EOS

YES EOS, GO FIdNISH UF

DECREMENT COUNT

CHECK FOR ZERO COUNT

GET C REG

TEST WITH B

ZERO SO JUMP

RELEASE HOLDOFF

GET COMMAND

SEND TO AUXCMD REGISTER

NOT ZERO, GET MORE DATA

GET DATA BYTE

STORE IN DATA BUFFER

GET READY FOR NEXT BYTE

DECREMENT COUNT

TAKE CONTROL SYNCHRONOUS

GET COMMAND

SEND TO AUXCMD REGISTER

@ DISABLE LISTEN LED

@ LOAD LED STATUS

@ SEND TO LED PORT

WAIT FOR COMPLETION

GET INTO STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

RELEASE HOLD OFF ON ALL

GET COMMAND

SEND TO AUXCMD REGISTER

SET TO TALK ONLY

GET COMMAND

SEND TO AUXCMD REGISTER

; GET COMMAND
SEND TO AUXCMD REGISTER

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LoC

512F
5130
5132
5135
5137
513A
513C

513D
513F
5141
5144
5146

5148
5149
514B
514E
5150

5153
5155
5157
515A

515B
515D

515E

5161
5163

5165
5167

5169
516B

OBJ

7E
FE4Q
FAA251
FESF
F2A251
D357
23

DBS5@
E6ld
CA3D51
3E3F
D357

7E
FE20
FA6151
FE3F
F26151

DB50
E610
CA5351
7E
D357
23

C34851

3E96
D353

3E84
D353

3E89
D353

oy

1 I (| A T T [1

[(O

[|

MODULE PAGE 13

589 AETEEITEIEEEFPEEERESEEEEEEEEEEE R RS SR RS SRS SRR SRR SRR SRS ES S
’

SEQ SOURCE STATEMENT
586 SINCLUDE (:Fl:XFR14.SRC)
587 ;

588 ;

5990 ;

591 ;

592 ;

593 ;

594 ;)

595 ; INPUTS:
596 ; OUTUTS:
597 ; CALLS:
598 ; DESTROYS:
599 ;

6d9 ; NOTE:

6d1l ;

692

60d3 XFER: RANGE
604+ MOV
605+ CPI
6do+ JM
607+ CPI
698+ JP
609 ouT
610 INX
611 WAITO
612+2?20013: IN
613+ ANI
614+ JZ
615 MVI
616 ouT
617 XFERl: RANGE
618+ MOV
619+ CPI
620+ JIM
621+ CPI
622+ JP
623 WAITO
624+220014: IN
625+ ANI
626+ Jz
627 MOV
628 ourT
629 INX
630 JMP
631 XFER2: CMD
632+ MVI
633+ ouT
634 CMD
635+ MVI
636+ ouT
637 CMD
638+ MVI
639+ ouT
640 LISTEN

XFER ROUTINE

I EEEERENEEEEERER SRR AR ER R R R R EEEEEEEEEEEEREEEEREESEEE

HL DEVICE LIST POINTER

NONE
NONE

A,HL,F/FS

XFER WILL WORK ONLY IF. THE TALK.R
USES EOI TO TERMINATE THE TRANSFER.

40H, 5EH, XFER4

A,M
40H
XFER4
5EH+1
XFER4
DOUT
H

INTO
BOM
2?0013
A, UNL
DOUT

4
.
s

“e g w8 S0 SO s N6 wp

GET VALUE TO CHECK -
< OR = TO LOWER

> OR = TO UPPER

SEND TALKER TO GPIB

INCR LIST POINTER ‘*
WAIT FOR BYTE OUT

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

SEND UNIVERSAL UNLISTEN

OUTPUT TO GPIB

20H, 3EH,XFER2

A,M
20H
XFER2
3EH+1
XFER2

.

1
.
’

°
7

GET VALUE TO CHECK
< OR = TO LOWER

> OR = TO UPPER

; WAIT FOR BYTE OUT

INTO
BOM
2?0014
A,M
DouT

H
XFER1
SHL.”
A, SHDW
AUXCMD
HDFE
A, HDFE
AUXCMD
LON
A,LON
AUXCMD
LED2E

N8 S0 NE NE ne N8 Ny Ng ~e S

e Se “e we v o~y

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

GET LISTENER

OUTPUT TO GPIB

INCR POINTER

LOOP UNTIL NON-VALID LSNR
ACTIVATE SHADOW HANDSHAKE
GET COMMAND

SEND TO AUXCMD REGISTER

GET COMMAND

SEND TO AUXCMD REGISTER
SET TO LISTEN ONLY

GET COMMAND

SEND TO AUXCMD REGISTER

@ ENABLE LISTEN LED

ISIS-I1 8080/8085 MACRO ASSEMBLER, V2.9
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LocC

516D
516F

5171
5173
5175

5178
517A
517C
S17E
5180

5183
5185

5187
5189
518B

518E
5190

5192
5194

5196
5198

519A
519C

519E
51A0
51A2

OBJ

3EQ2
D35E

DB5@
E610
CA7151

3EOB
D353
DB5J
E608
CA7C51

3E@GD
D353

DB50
E610
CA8751

3EQ2
D353

3EQZ4
D353

3El6
D353

3E20
D35SE

3E8A
D353
Cco

L | | | ({1 Y T

o

1 T T 1

SEQ

641+

642+

643
644+2?20015:
645+

646+

647

648+

649+

650 XFER3:
651

652

653

654+

655+

656
657+220016:
658+

659+

6060

661+

662+

663

664+

665+

666

667+

668+

669

670+

671+

672

673+

674+

675 XFER4:
676 ;

~677 SEJECT

SOURCE STATEMENT

MVI
ouT
WAITO
IN
ANI
JZ
CMD
MVI
ouT
IN
ANI
Jz
CMD
MVI
ouT
WAITO
IN
ANI
Jz
CMD
MVI
ouT
CMD
MVI
ouT
CMD
MVI
ouT
LISTEN
MVI
ouT
CMD
MVI
ouT
RET

A, LEDZ2E
LEDS

INTO
BOM
220015
GTS
A,GTS
AUXCMD
INTO
EOIMK
XFER3
TCS

A, TCS
AUXCMD

INTO
BOM
2?0016
RHDF
A, RHDF
AUXCMD
HDECLR

A, HDECLR

AUXCMD
SHDCLR

A, SHDCLR

AUXCMD
LED2D
A,LED2D
LEDS
TON

A, TON
AUXCMD

~e

~e

Se o Se S ~a

Ne Se N6 S Se ~e So o~

~e S8 ~o

’

»
’

Se S Se Se ~§ S» o ~e

MODULE PAGE 14

@ LOAD LED STATUS

@ SEND TO LED PORT

WAIT FOR COMPLETION

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

GO TO STANDBY

GET COMMAND

SEND TO AUXCMD REGISTER
GET STATUS BYTE

CHECK FOR EOI

WAIT FOR IT

TAKE CONTROL SYNCHRONOUSL
GET COMMAND

SEND TO AUXCMD REGISTER
WAIT FOR COMPLETION

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS
RELEASE HOLDOFF

GET COMMAND

SEND TO AUXCMD REGISTER

;: GET COMMAND
SEND TO AUXCMD REGISTER
RESET SHADOW HANDSHAKE
: GET CCMMAND
SEND TO AUXCMD REGISTER
@ RESET LISTEN LED
@ LOAD LED STATUS
@ SEND TO LED PORT
SET TO TALK ONLY
GET COMMAND
SEND TO AUXCMD REGISTER

ISIS-11 8080/8985 MACRO ASSEMBLER,
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOoC

51A3
51A5

51A7
51A8
51AA
51AD
51AF

51B2
51B4
51B6
51B9
51BA
51BC
51BD

51Co
51C2
51C4
51C7
51C9

51CB
51CD
51CF
51D2

OBJ

3E3F
D357

7E
FE20
FAC@51
FE3F
F2C@51

DB5@
E610
CAB251
7E
D357
23
C3A751

DB59
E610
CAC@51
3E@8
D357

DB5@
E610
CACBS51
Co

T T T T T TR R T R T

1 T | A (I [

720 SEJECT

SOURCE STATEMENT

SEQ
678 SINCLUDE
679 ;
689 ;
681 ;
682 ;
683 ;
684 ;
685 ;
686 ;
687 ; INPUTS:
688 ; OUTPUTS:
689 ; CALLS:
6990 ; DESTROYS:
691 ;
692 TRIG: MVI
693 ourT
694 TRIG1: RANGE
695+ MOV
696+ CPI
697+ JM
698+ CPI
699+ JP
709 WAITO
701+220017: 1IN
782+ ANI
7903+ Jz
794 MOV
705 ouT
706 INX
797 JMP
798 TRIG2: WAITO
7909+220018: IN
7190+ ANI
711+ JZ
712 MVI
713 ouT
714 WAITO
715+2?20019: IN
716+ ANI
717+ JZ
718 RET
719 ;

v2.d MODULE PAGE 15

(:F1:TRG14.SRC)

khhkkhkhkhkkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkkdhkhkkhkhkhkkhkkhkhkkhkkk*

TRIGGER ROUTINE

khkhkhkkhkhkhkkhkhhkkkhkhkhhkhkhkdkhkhkhkkhkhkhhkdhhkhkkkkhkikhkhkkkkhkkkhkdhkkdhkdxhkxk

HL LISTENER LIST POINTER

NONE
NONE

A,HL F/FS

A, UNL ; GET UNIVERSAL UNLISTEN
DOUT : OUTPUT TO GPIB

20H, 3EH, TRIG2

A,M ; GET VALUE TO CHECK
20H : < OR = TO LOWER
TRIG2
3EH+1 ; > OR = TO UPPER
TRIG2
; WAIT FOR BYTE OUTPUT
INTO ; GET INT@ STATUS
BOM ; CHECK FOR BYTE OUT -
2?0017 ; WAIT UNTIL IT I3
A,M ; GET LISTENER
DOUT ; SEND LISTNER TO GPIB
H ; INCREMENT POINTER
TRIGL ; LOOP UNTIL NON-VALID LSNR
: WAIT FOR LAST BYTE OUT
INTQ ; GET INT@ STATUS
BOM : CHECK FOR BYTE OUT
2?0018 ; WAIT UNTIL IT IS
A,GET ; GET GROUP EXECUTE TRIGGER
DOUT ; OUTPUT TO GPIB
; WAIT FOR OUTPUT
INTO ; GET INT@ STATUS
BOM : CHECK FOR BYTE OUT
2?0019 ; WAIT UNTIL IT IS

ISIS-11 808@/8085 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

51D3
51D5

51D7
51D8
51DA
51DD
51DF

51E2
51E4
51E6
51E9
51EA
51EC
51ED

" 51F9

51F2
51F4
51F7
51F9

51FB
51FD
51FF
5202

OBJ

3E3F
D357

7E
FE20
FAF@51
FE3F
F2F@51

DB5@
E610
CAE251
7E
D357
23
C3D751

DB5@
E610
CAF@51
3EQ4
D357

DB5@
E619
CAFB51
Co

L | T 1 | A 1 Y 1

1| T | T 1 A 1 1 |

763 SEJECT

SEQ

721

722

723 ;

724 ;

725 ;

726 ;

727 ;

728 ;

729 ;

739 ; INPUTS:
731 ; OUTPUTS:
732 ; CALLS:
733 ; DESTROYS:
734 ;

735 DCLR: MVI
736 ouT
737 DCLR1: RANGE
738+ MOV
739+ CPI
740+ JM
741+ CPI
742+ JP
743 WAITO
744+220023: 1IN
745+ ANI
746+ JZ
747 MOV
748 ouT
749 INX
750 JMP
751 DCLR2: WAITO
752+220021: IN
753+ ANI
754+ JZ
755 MVI
756 ouT
757 WAITO -~
758+?220022: IN
759+ ANI
760+ Jz
761 RET
762 ;

SOURCE STATEMENT

SINCLUDE (:F1:DCR14.SRC)

MODULE PAGE 16

khkhkkhkhkhkhkhkkrkhkhkhkhAkhkhkrArhkhkhkhkhkrbrhkhkhkhkhbhkhhkkhhkkkhkhkkhkhkkhkhkkhkhkdkhkkkihkxs

DEVICE CLEAR ROUTINE

khkhkhkkhkkhkkhkkhkkkhkhkkhkkhkkhkkkhkhkkhkhkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhokhkhkhkhhkhkhhkhhkkhkkkkxs

HL LISTENER POINTER

NONE

NONE

A,HL,F/FS

A, UNL ; UNIVERSAL UNLISTEN

DOUT ; OUTPUT TO GPIB

20H, 3EH, DCLR2

A,M ; GET VALUE TO CHECK

20H : < OR = TO LOWER

DCLR2

3EH+1 : > OR = TO UPPER

DCLR2
: WAIT FOR BYTE OUTPUT

INTO ;: GET INTJ STATUS

BOM ; CHECK FOR BYTE OUT

2?0020 ; WAIT UNTIL IT IS

A,M : GET LISTENER

DOUT ; SEND TO GPIB

H ;: GET NEXT LISTENER

DCLR1 ; LOOP UNTIL A NON-VALID LSTN
; WAIT FOR LAST BYTE

INTQ ; GET INT@ STATUS

BOM ; CHECK FOR BYTE OUT

2?0021 ; WAIT UNTIL IT IS

A, SDC ; SEND DEVICE CLEAR

DOUT ; TO ALL ADDRESSED LISTENERS
; WAIT FOR BYTE OUTPUT

INTQ ; GET INT@ STATUS

BOM ; CHECK FOR BYTE OUT

220022 ; WAIT UNTIL IT IS

ISIS-I1I 808@/8985 MACRO ASSEMBLER,
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LocC

5203
5205

5207
5209
520B
520E
5210
5212
5214

5216
5218
521A
521D
521F

5221
5223

5225
5227
5229

522C
522D
522F
5232
5234
5237
5238
523A

523B
523D
523F

5242
5244

5246

OBJ

3E3F
D357

DB50
E610
CAQ752
DB5A
E61F
F620
D357

DB52
E610Q
CAl652
3E18
D357

3E83
D353

DB50@
E610
CA2552

7E
FE40
FA7352
FESF
F27352
7E
D357
23

DB59
E610
CA3B52

3E89
D353

3EOB

o un

L I | | O T [I 1

W

SEQ SOURCE
764
765 ;
766 ;
767
768 ;
769 ;
779
771
772 ;
773 ; INPUTS:
774 ; OUTPUTS:
775 ; CALLS:
776 ; DESTROYS:
777
778 SPOL: MVI
779 ouT
780 WAITO
781+220023: IN
782+ ANTI
783+ JZ
784 IN
785 ANI
786 ORI
787 ouT
788 WAITO
789+220324: IN
790+ ANI
791+ JZ
792 MVI
793 ouT
794 CMD
795+ MVI
796+ ouT
797 WAITO
798+2200325: IN
799+ ANI
809+ JZ
801 SPOL1l: RANGE
832+ MOV
803+ CPI
804+ JIM
805+ CPI
806+ JP
8937 MOV
848 ouT
839 INX
810 WAITO
811+?220@326: IN
812+ ANI
813+ JZ
814 CMD
815+ MVI
8lo+ ouT
817 CMD
= 818+ MVI

V2.0

STATEMENT

$INCLUDE (:F1:SRP14.SRC)

MODULE PAGE 17

khkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhAhkhkkhAkArdhkhkhkhkhkhkhAhkhhkhkhhkhkhhhhkkhrhkrhkk:

SERIAL POLL ROUTINE

khkhkhkhkkkhkkhkhkhkhhkhkhhkhkhkhkhkkhkhkhkkhkhkhhkkhkhkkhkhkhkkhkhkkxkhkhhkkkhkkhkkhkkkhkkhk*x

HL TALKER LIST POINTER

FILLS BUFFER POINTED TO

NONE

BY DE

A,BC,DE,F/FS

A, UNL
DOUT

INTO
BOM
220023
MDAR
1FH
MLA
pouT

INT@
BOM
220024
A, SPE
DOUT
HDFA
A, HDFA
AUXCMD

INTO
BOM
220925
40H, 5EH,
A,M
40H
SPOL?Z
S5EH+1
SPOL2
A,M
DOUT

H

INTO
BOM
2?0026
LON

A, LON
AUXCMD
GTS
A,GTS

~e So =~

SPOL2 ;

UNIVERSAL UNLISTEN
OUTPUT TO GPIB

WAIT FOR BYTE OUTPUT
GET INT@ STATUS

CHECK FOR BYTE OUT -
WAIT UNTIL IT IS

@ GET DEVICE ADDRESS

@ GET GPIB ADDRESS

SEND MLA

OUTPUT TO GPIB

WAIT FOR OUTPUT -
GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

SERIAL POLL ENABLE
OUTPUT TO GPIB

HOLDOFF ON ALL DATA

GET COMMAND

SEND TO AUXCMD REGISTER
WAIT FOR BYTE OUTPUT
GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

CHECK TALKER LIST
GET VALUE TO CHECK
< OR = TO LOWER B
> OR = TO UPPER

GET TALKER

OUTPUT TO GPIB -
INCREMENT TALKER POINTER
WAIT FOR BYTE OUTPUT

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

LISTEN ONLY

GET COMMAND

SEND TO AUXCMD REGISTER
GO TO STANDBY

GET COMMAND

ISIS-II 8080/8085 MACRO ASSEMBLER,

V2.0

*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOoC

5248

5242
524cC

524E
5250
5252

5255
5257

5259
525B

525D
525F
5261
5264
5266
5267

5268
526A

526C
526E
5270
5273
5275

5277
5279

5278
527D
527F
5282

OBJ

D353

3EQ2
D35E

DB50@
E620
CA4E52

3EOD
D353

3E20
D35E

DB5@
E610
CA5D52
DB57
12

13

3E8A
D353

3EQ2
D353
C32C52
3E19
D357

3EB3
D353

DB5@
E610
CA7B52
Cc9

wnn

1 I (I [T T 1

L I | L (| | e [| T | 1 1 A A

SEQ

819+

8249

821+

822+

823
824+220027:
825+

826+

827

828+

829+

830

831+

832+

833
834+?2?20028:
835+

836+

837

838

839

8449

841+

842+

843

844+

845+

840

847 SPOL2:
848

849

850+

851+

852
853+2720029:
854+

855+

856

857 ;

858 SEJECT

SOURCE STATEMENT

ouT
LISTEN
MVI
ouT
WAITI
IN
ANT
Jz
CMD
MVI
ouT
LISTEN
MVI
ouT
WAITO
IN
ANI
Jz

IN
STAX
INX
CMD
MVI
ouT
CMD
MVI
ouT
JMP
MVI
ouT
CMD
MVI
ouT
WAITO
IN
ANI
Jz
RET

AUXCMD
LED2E H
A,LED2E ;
LEDS

INTO

BIM :
2?0027 H
TCS H
A, TCS p
AUXCMD ;
LED2D :
A,LED2D
LEDS

INTO
BOM
2?0028
DIN

D

D

TON

A, TON
AUXCMD
RHDF
A, RHDF
AUXCMD
SPOL1
A, SPD
DOUT
HDACLR
A, HDACLR
AUXCMD

~e %o Nu Sp NP Ne Se N Se o~

e S® e N8 ~g “o ~p “o ~o

INTJ
BOM
2?0029

e S0 ~o “o ~p

MODULE PAGE 18

SEND TO AUXCMD REGISTER
@ ENABLE LISTEN LED

@ LOAD LED STATUS

@ SEND TO LED PORT

WAIT FOR BYTE INPUT

GET INT@ STATUS

CHECK FOR BYTE IN

WAIT UNTIL IT IS

TAKE CONTROL SYNC

GET COMMAND

SEND TO AUXCMD REGISTER
@ DISABLE LISTEN LED

@ LOAD LED STATUS

@ SEND TO LED PORT

WAIT FOR ACTION COMPLETE
GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

GET SP RESPONSE BYTE
STORE IT IN THE BUFFER
INCR BUFFER POINTER
TALK ONLY MODE

GET COMMAND

SEND TO AUXCMD REGISTER
RELEASE HOLD OFF

GET COMMAND

SEND TO AUXCMD REGISTER
GET NEXT DEVICE ON LIST
SERIAL POLL DISABLE
OUTPUT TO GPIB

; GET COMMAND
SEND TO AUXCMD REGISTER
WAIT FOR BYTE OUTPUT
GET INT@ STATUS
CHECK FOR BYTE OUT
WAIT UNTIL IT IS

ISIS-II 8¢80/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 19
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

5283
5285

5287
5288
528A

- 528D

528F

5292
5294
5296
5299
529A

529C
529E
5270
52A3
52A5

52A7
5279
52AB
52AE
52AF
52B1
52B3
52B4
52B5

52B8
52BA
52BC
52BF

OBJ

3E3F
D357

7E
FE20
FAB852
FE3F
F2B852

DB59
E610
CA9252
7E
D357

DB5@
E610
CA9CS52
3E@5
D357

DB50
E610
CAA752
1A
F669
D357
23

13
c38752

DB59@
E610
CAB852
C9

1 S I T

| L | I T T

1 T | | T (I T TR T

SEQ SOURCE STATEMENT

859 S$INCLUDE (:Fl:PPE14.SRC)

860

861 :

862 :'**
863

864 ; PARALLEL POLL CONFIG. ROUTI
222 :.**
867 ;

868 ; INPUTS: HL LISTENER LIST POINTER

869 ; DE CONFIGURATION BYTE POINTER

870 ; OUTPUTS: NONE

871 ; CALLS: NONE

872 ; DESTROYS: A,DE,HL,F/FS

873 ; ‘

874 PPEN: MVI A, UNL ; UNIVERSAL UNLISTEN

875 ouT DOUT ; OUTPUT TO GPIB

876 PPENl: RANGE 20H,3EH,PPEN?2 ; CHECK LISTENER LI
877+ MOV A,M ; GET VALUE TO CHECK

878+ CPI 20H ; < OR = TO LOWER

879+ JIM PPEN2

880+ CPI 3EH+1 ; > OR = TO UPPER

881+ JP PPEN2

882 WAITO ; WAIT FOR BYTE OUTPUT —
883+?2?0@30: IN INTQ ; GET INT@ STATUS

884+ ANI BOM ; CHECK FOR BYTE OUT

885+ JZ 220030 ; WAIT UNTIL IT IS

886 MOV A,M ; GET LISTENER

887 ouT DOUT ;: OUTPUT TO GPIB

888 WAITO ; WAIT FOR BYTE OUTPUT
889+?2720@31: IN INTQ ; GET INT@ STATUS

890+ ANI BOM ; CHECK FOR BYTE OUT

891+ JZ 2?0031 ; WAIT UNTIL IT IS

892 MVI A, PPC ; PARALLEL POLL CONFIGURE
893 ouT DOUT ; OUTPUT TO GPIB -
894 WAITO : WAIT FOR BYTE OUTPUT
895+?2?@@32: IN INTQ ; GET INT@ STATUS

896+ ANI BOM ; CHECK FOR BYTE OUT

897+ JZ 220032 ; WAIT UNTIL IT IS

898 LDAX D ; GET CONFIGURATION -
899 ORI PPE : OR WITH PPE

200 ouT DOUT ; OUTPUT TO GPIB

901 INX H ;: INCR BUFFER POINTERS

902 INX D ,

9093 JMP PPEN1 ; LOOP UNTIL DONE

994 PPEN2: WAITO ; FOR LAST BYTE OUTPUT
905+?2?2@@33: IN INTQ ; GET INT@ STATUS

906+ ANI BOM ; CHECK FOR BYTE OUT

907+ JZ 2?0033 ; WAIT UNTIL IT IS

908 RET S
9¢d9 ;

910 SEJECT

ISIS-I1 8980/80985 MACRO ASSEMBLER, V2.9 MODULE PAGE 20
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

[‘ LoC

52C0Q
52C2

52C4
- 352C5
52C7
52CA
52CC

52CF
52D1
[52D3
52D6
52D7

52D9
52DA

52DD
52DF
52E1
52E4
52E6

52E8
52EA
52EC
52EF

OBJ

3E3F
D357

7E
FE29
FADDS52
FE3F
F2DD52

DB50
E610
CACF52
7E
D357
23
C3C452

DB5@
E610@
CADD52
3E79
D357

DB50
E610
CAE852
C9o

LI | O (I (O T (O T R T N I T A 'O TR TR

SEQ

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928+
929+
930+
931+
932+
933
934+
935+
936+
937
938
939
949
941
942+
943+
944+
945
946
947
948+
949+
950+
951
952
953

SOURCE STATEMENT

SINCLUDE (:Fl:PPD14.SRC)

tE A SRR SRR EEEREEEEEESEEERERESEEEEEEEESEEEEEESESEESEEEES

PARALLEL POLL DISABLE ROUTINE

RS R R EEESEEEREEEEEERSESEREEREEEEEEEEEREESEESEEEEEDEEEEEIEIEEEE

~e S® wp S8 w~o So 0~

; INPUTS: HL LISTENER LIST POINTER
; OUTPUTS: NONE
; CALLS: NONE
; DESTROYS: A,HL,F/FS
PPDS: MVI A, UNL ; UNIVERSAL UNLISTEN

ouT DOUT ; OUTPUT TO GPIB
PPDS1: RANGE 20H, 3EH, PPDS2 ; CHECK LSTNR. LIST

MOV A,M ; GET VALUE TO CHECK

CPI 20H : < OR = TO LOWER

JM PPDS2

CPI 3EH+1 ; > OR = TO UPPER

JP PPDS2

WAITO : WAIT FOR BYTE OUTPUT
?2?20034: IN INTQ ; GET INT@ STATUS

ANI BOM ; CHECK FOR BYTE OUT

JZ 220034 : WAIT UNTIL IT IS

MOV A, M ; GET LISTENER

ouT DOUT ; OUTPUT TO GPIB

INX H ; INCR LIST POINTER

JMP PPDS1 ; LOOP UNTIL INVALID LSNR
PPDS2: WAITO ; FOR LAST BYTE OUTPUT
??20035: IN INTO ; GET INT@ STATUS

ANI BOM ; CHECK FOR BYTE OUT

JZ 2?0035 3 WAIT UNTIL IT IS

MVI A, PPD ; PARALLEL POLL DISABLE

ouT DOUT ; OUTPUT TO GPIB

WAITO ; WAIT FOR BYTE OUTPUT
?2?20036: IN INTO ; GET INT@ STATUS -

ANT BOM ; CHECK FOR BYTE OUT

JZ 2?0036 ; WAIT UNTIL IT IS

RET

.
7

SEJECT

ISIS-II 8089/8985 MACRO ASSEMBLER, V2.0 MODULE PAGE 21
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC OBJ SEQ SOURCE STATEMENT .
= 954 SINCLUDE (:F1:PPU14.SRC)
= 955
= 956 ;
—_ 957 ;***’
= 958
= 959 ; PARALLEL POLL UNCONFIGURE
= gg? ’I.***
= 962 ;
= 963 ; INPUTS: NONE
= 964 ; OUTPTS: NONE
= 965 ; CALLS: NONE
= 966 ; DESTROYS: A,F/FS
= 967 ;
52F@ 3E1S5 = 968 PPUN: MVI A, PPU ; PARALLEL POLL UNCONFIGURL
52F2 D357 = 969 ouT DOUT ; OUTPUT TO GPIB
= 970 WAITO : WAIT FOR BYTE OUTPUT
52F4 DBS5O = 971+2?2@037: IN INT® ; GET INT@ STATUS
52F6 E610 = 972+ ANI BOM ; CHECK FOR BYTE OUT
52F8 CAF452 = 973+ JZ 2?0037 ; WAIT UNTIL IT IS
52FB C9 = 974 RET
975 ;
= 976 SINCLUDE (:Fl:PRP14.SRC)
= 977 ;
= 978 ; -
= 979 ;***
= 980 ;
= 981 ; CONDUCT A PARALLEL POLL
= 982 ;
= 983 ;***
= 984 ;
= 985 ; INPUTS: NONE
= 986 ; OUTPUTS: A PARALLEL POLL STATUS BYTE
= 987 ; CALLS: NONE
= 988 ; DESTROYS: A,F/FS
= 989 ;
= 99¢ PRPL: CMD RPP ;: EXECUTE PARALLEL POLL
52FC 3ES8E = 991+ MVI A, RPP ; GET COMMAND
S2FE D353 = 992+ ouT AUXCMD : SEND TO AUXCMD REGISTER
= 993 DELAY 125 ; WAIT FOR 125 MICRO-SECONDS
5309 C5 = 994+ PUSH B : SAVE B
5301 011900 = 995+ LXI B,125%3/23
5304 OB = 996+??20038: DCX B : COUNT DOWN
53085 79 = 997+ MOV A,C ; TEST FOR END
5306 BO = 998+ ORA B
5307 C2@453 = 999+ JINZ 2?0038
530A Cl1 =1000+ POP B : RESTORE B
530B DB56 =1001 IN CPTRG ; GET PP STATUS
530D F5 =1002 PUSH PSW ; SAVE STATUS
=100@3 CMD RPPCLR ; CLEAR PARALLEL POLL
530E 3EQE =1004+ MVI A, RPPCLR ; GET COMMAND R
5310 D353 =1005+ ouT AUXCMD ; SEND TO AUXCMD REGISTER
5312 F1 =1006 POP PSW ; RESTORE STATUS
5313 C9 =10037 RET

19928 ;

ISIS-II1 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 22
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LocC

[

5314
5316
5318
5319

531B
531C
531E
- 5321
5323
5326
5327
532A

532C
532E
5330
5333
5335

5337
5339
533B

533E
5340
5342
5344

OBJ

DB5A
E61F
47

Fo640

7E
FE40
FA4ES53
FES5F
F24ES53
B8
CA4ES3
D357

DB50
E610
CA2C53
3E@9
D357

DB54d
E610
CA3753

3E@A
D353
3E20
D351

SEQ

=1009
=1010
=1011
=1012
=1013
=1014
=1015
=1016
=1017
=1018
=1019
=1020
=1021
=1022
=1023
=1024
=1025
=1026
=1027
=1028
=1029
=1030
=1031
=1032
=1033
=1034
=1035
=1036
=1037
=1038
=1039
=1040
=1041+
=1042+
=1043+
=1044+
=1045+
=1046
=1047
=1048
=1049
=105+
=1051+
=1052+
=1053
=1054
=1055
=1056+
=1057+
=1058+
=1059
=1060+
=1061+
=1062
=1063

SOURCE STATEMENT

S$INCLUDE (:F1:PCT14.SRC)

R RS SRS SRR EEEEEEEEEEESEEEEEEREERSESEEDESEEEEEEEEEISES

PASS CONTROL ROUTINE

khkhkkhkhkhkkhkhkhkkkhkhkhkkhkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhbhkhkhkhkkhkhkhkkhkkkhkhkkkhkhkkki

SO Ne NP Ne Se Ng S8 ~p S~

INPUTS: HL POINTER TO TALKER LIST
OUTPUTS: NONE

CALLS: WAITO

DESTROYS: A,B,HL,F/Fs

DESCRIPTION: THIS ROUTINE WILL PASS CONTROL FROM
THE ACTIVE CONTROLLER (IE US) TO THE
DEVICE SPECIFIED IN THE TALKER LIST.
THE TALKER ADDRESS IS CHECKED FOR A
VALID TALKER ADDRESS AND THAT IT IS
NOT OUR ADDRESS (IF EITHER TEST FAIL:
NO ACTION IS TAKEN). THE TAKE CON-
TROL COMMAND (TCT) IS SENT AND THC
MASK FOR UNIDENTIFIED CMD INTERRUPT
IS ENABLED (NEEDED TO RECEIVE CONTRO
IF PASSED TO US). WE WILL GO IDLE
WHEN THE TCT MESSAGE IS HANDSHAKEN

PU*. SO SO N N8 Ne NP Ng N6 Ne S0 Np Se Ny So o~

BY THE DEVICE RECEIVING CONTROL.

CTL: IN MDAR ; GET MY GPIB ADDRESS

ANI 1FH ; GET GPIB ADDRESS

MOV B,A ; SAVE GPIB ADDRESS

ORI MTA ; GET MY TALK ADDRESSS

RANGE 40H, 5EH, PCTL1 ; CHECK TALKER LIST

MOV A,M ; GET VALUE TO CHECK

CPI 40H : < OR = TO LOWER

JIM PCTL1 :

CPI 5EH+1 ; > OR = TO UPPER

JP PCTL1

CMP B ; IS IT MY TALKER ADDRESS

JZ PCTL1 ; YES, JUST RETURN

ouT DOUT ; NO, OUTPUT TO GPIB

WAITO ; WAIT FOR OUTPUT
?2?20039: 1IN INTY ; GET INTQO STATUS

ANI BOM ; CHECK FOR BYTE OUT

Jz 2?0039 ; WAIT UNTIL IT IS

MVI A, TCT ; TAKE CONTROL MESSAGE

OouT DOUT ; OUTPUT TO GPIB

WAITO ; WATT FOR BYTE OUTPUT
220040 : 1IN INTO ; GET INTO STATUS

ANI BOM ; CHECK FOR BYTE OUT

JZ 2?0040 ; WAIT UNTIL IT IS

CMD TONCLR ; RELEASE TALK ONLY

MVI A, TONCLR ; GET COMMAND

ouT AUXCMD ; SEND TO AUXCMD REGISTER

MVI A,UCGM ; EN. UNIDENTIFIED CMD INTR.

ouT INTM1 ;

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.9
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LoC

5346
5347

5349
534B
534D
534E

OBJ

78
D354

3E12
D353
23
Co

SEQ

=1064

=1065

=1066

=1067+

=1068+

=1069

=1079 PCTL1:
1971 ;
1972 SEJECT

SOURCE STATEMENT

MOV
ouT
CMD
MVI
ouT
INX
RET

A,B
ADDR
RLCT
A, RLCT
AUXCMD
H

MODULE PAGE 23

GET GPIB ADDRESS

ENABLE TALK AND LISTEN
GO TO IDLE

GET COMMAND

SEND TO AUXCMD REGISTER
FOR CONSISTENCY

ISIS-I1 8080/8085 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

534F
5351
5353
5356
5358
535A
535D
535F
5361

5364
5365
5367

5369
536B

OBJ

DB51
E620
CA8453
DB56
FE@O9
C27F53
DB52
E602
CA7F53

AF
D350
D351

3E11
D353

SEQ

=19373
=19074
=1075
=1076
=1977
=1078
=1079
=1080
=1081
=1482
=1083
=1084
=1085
=1086
=1987
=1088
=1489
=1090
=1091
=1092
=1093
=1094
=1095
=1096
=1097
=1098
=1099
=1100
=1191
=1102
=11923
=1104
=1185
=11d6
=1197
=1108
=1109
=1119
=1111
=1112
=1113
=1114
=1115
=1116
=1117
=1118
=1119
=1120
=1121
=1122+
=1123
=1124
=1125
=1126+
=1127+

SOURCE STATEMENT

SINCLUDE (:F1:RCT14.SRC)

INPUTS: NONE
OUTPUTS: A =

WAITO
A,F/FS

CALLS:
DESTROYS:
DESCRIPTION:

LER.

A <

w‘- SE NS NE e Ne Se N S N N0 Ne T8 N SB SNe S8 Np N0 Ng N0 N NP Ng me SE ng S0 Ny N0 wp N0 o~ Ne wp ~e o~y

IN INT1
ANTI UCGM
JZ RCTL2
IN CPTRG
CPI TCT
JINZ RCTL1
IN ADRST
ANI TADSM
JZ RCTL1
CLRA

XRA A

ouT INTMO
ouT INTMIL
CMD RQC
MVI A, RQC
ouT AUXCMD

@ DO NOT TAKE
A <> @ TAKE CONTROL

Se Np Se W Se Ny N8 o

~e

~e ~»

.
’
.
’
.
’

MODULE PAGE 24

Akkhhkhkhkhkkhkhkkhhkhkhkhkhkhhkhkrhkhkhdhkhkhkhkhkhkkkhkhkhhkhhkhkhhkdkkhkhhkhkkkhx

"RECEIVE CONTROL

IR R EREEEEESEESE SRR ERE R R R RS R EE SRR EEREEREREESEERESESRE SR

CONTROL

THIS ROUTINE WILL RECEIVE CONTROL
FROM THE CURRENTLY ACTIVE CONTROL-
THE UNIDENTIFIED COMMAND INTER
RUPT (UCGM) MUST HAVE BEEN ENABLED
EITHER DURING INITIALIZATION OR WHEN
CONTROL WAS PASSED.
TINE IS INVOKED WHEN A UCGN INTER-
RUPT IS HANDLED BY THE CPU. IF
THE UNIDENTIFIED COMMAND WAS NOT A
TAKE CONTROL COMMAND
WAS AND WE WERE NOT TALK ADDRESSED
THEN THIS ROUTINE OUTPUTS A = 4.
IF IT IS A TCT COMMAND AND WE ARE
TALK ADDRESSED THEN ALL INTERRUPT
MASKS ARE CLEARED AND WE WILL RE-
QUEST CONTROL OF
> @ WHEN
NORMALLY SOME ADVANCE WARNING OF
IMPENDING PASS CONTROL SHOULD BE
GIVEN TO US BY THE CONTROLLER WITH
OTHER USEFUL INFO.
IS SITUATION SPECIFIC AND IS NOT
COVERED HERE.

THUS THIS ROU-

(TCT) OR IF IT

THE BUS AND RETURN
CONTROL IS TAKEN.

THIS PROTOCOL

GET STATUS

UNIDENTIFIED COMMAND?

YES, GO RETURN

YES, GET COMMAND PASS THRU
IS IT TAKE CONTROL?

NO, GO RETURN INVALID

GET ADDRESS STATUS

ARE WE TALK ADDRESSED?

NO, GO RETURN INVALID

ZERO ACCUMULATOR
CLEAR INTERRUPT MASKS

REQUEST CONTROL
GET COMMAND
SEND TO AUXCMD REGISTER

ISIS-I1 8080/8085 MACRO ASSEMBLER, V2.0
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC

536D

536F
5371

5374
5376

5378
537A
537C

537F
5381

5383
5384

OBJ

DB50

E610
CA6D53

3E8A
D353

3EQ1
D353
C38453

3EQ1
D353

AF
(63°)

SEQ

=1128
=1129+?220041:
=1130+
=1131+
=1132
=1133+
=1134+
=1135
=11306+
=1137+
=1138
=1139 RCTL1:
=1140+
=1141+
=1142
=1143+
=1144 RCTL2:
1145 ;
1146 SEJECT

SOURCE STATEMENT

WAITO
IN
ANI
JZ
CMD
MVI
OoUuT
CMD
MVI
ouT
JMP
CMD
MVI
ouT
CLRA
XRA
RET

INTO
BOM
2720041
TON

A, TON
AUXCMD
DACR
A,DACR
AUXCMD
RCTL2
DACR
A, DACR
AUXCMD

A

e e ~g So N,

e Se ~o e ~ao

MODULE PAGE 25

WAIT FOR CONTROL

GET INT@ STATUS

CHECK FOR BYTE OUT

WAIT UNTIL IT IS

SET TALK ONLY

GET COMMAND

SEND TO AUXCMD REGISTER
ACKNOWLEDGE CMD PASS THRU
GET COMMAND

SEND TO AUXCMD REGISTER

ACKNOWLEDGE CMD PASS THRU
GET COMMAND

SEND TO AUXCMD REGISTER -
INVALID RETURN CODE

ZERO ACCUMULATOR

ISIS-I1 8080/8985 MACRO ASSEMBLER, V2.d MODULE PAGE 26
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

LOC OBJ SEQ SOURCE STATEMENT
=1147 S$SINCLUDE (:F1:SCM14.SRC)
=1148 ;
=1149 :
=115@ I.***
=1151 ;
=1152 ; SEND COMMAND STRING
=1153 ;
=1154 ,.***
=1155 ;
=1156 ; INPUTS: DE COMMAND STRING POINTER
=1157 ; OUTPUTS: NONE
=1158 ; CALLS: WAITO
=1159 ; DESTROYS: A,DE,F/FS
=1160 ;
5385 1A =1161 SCND: LDAX D : GET COMMAND
5386 FEFF =1162 CPI @FFH ; IS IT LIST END?
5388 CA9853 =1163 JZ SCMD1 ; YES, GO RETURN
538B D357 =1164 ouT DOUT ; NO, SEND TO GPIB
538D 13 =1165 INX D ; INCR POINTER
=1166 WAITO ; WAIT TILL DONE
538E DB5@ =1167+2?20042: IN INTQ@ ; GET INT@ STATUS
5390 E610 =1168+ ANI BOM ; CHECK FOR BYTE OUT
5392 CAB8ES53 =1169+ JZ 2?0042 ; WAIT UNTIL IT IS
5395 C38553 =1170 JMP SCND ; LOOP TILL DONE
5398 13 =1171 SCMDl: INX D ; FOR CONSISTENCY
5399 C9 =1172 RET
1173 ;
=1174 S$INCLUDE (:F1:SQD14.SRC)
=1175 ;
=1176
—-1177 ‘.***-
=1178
=1179 ; SRQ OCCURRED ROUTINE
=1180 ;
=1181 ’.***-
=1182 ;
=1183 ; INPUTS: NONE
=1184 ; OUTPUTS: A = @ NO SRQ OCCURRED
=1185 ; A < > @ SRQ OCCURRED
=1186 ; CALLS: NONE
=1187 ; DESTROYS: A,F/FS
=1188 ;
539A DB51 =1189 SRQD: IN INT1 ; GET INTR1l STATUS
539C E602 =11990 ANI SROM ; CHECK FOR SRQ
539E C2A253 =1191 JINZ SRQD1 ; SRQ, GO RETURN
=1192 CLRA ; NO SRQ, SO CLEAR ACC.
53A1 AF =1193+ XRA A ; ZERO ACCUMULATOR
53A2 C9 =1194 SRQD1l: RET
1195 ;

1196 S$EJECT

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 27
*** DRIVERS FOR ZT 85/38 CONTROLLER **¥*

LOC OBJ

53A3 3E90
53A5 D353

53A7 C9

53A8 3E1l0

53AA D353 .

53AC C9

SEQ

=1197
=1198
=1199
=1200
=1201
=1202
=1203
=1204
=1205
=1206
=1207
=1208
=1209
=1210
=1211
=1212+
=213+
=1214
1215
=1216
=1217
=1218
=1219
=1220
=1221
=1222
=1223
=1224
=1225
=1226
=1227
=1228
=1229
=1230
=1231+
=1232+
=1233
1234
1235

SOURCE STATEMENT .

SINCLUDE (:F1:REM14.SRC)

’

H
ehkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhbkhkhkhhkhhkhkhkhkhkhkhkkhkkhkhkhbhkhkhbhkhhhkhkikhkhkkkihtkx

REMOTE ENABLE ROUTINE

~e ~o

MEEZEEEEESESEEERSES SRR S RS R AR R R ERS R R REEEEREESEEEEEESEEEEESE]

: INPUTS: NONE
¢ OUTPUTS: NONE
: CALLS: NONE
: DESTROYS: A,F/FS
REME: CMD SRE ;: ASSERT REMOTE ENABLE
MVI A, SRE : GET COMMAND
OUT AUXCMD ; SEND TO AUXCMD REGISTER
RET '

INCLUDE (:F1:LOC1l4.SRC)

hkhkhkkhkdkhkhkhkhkkhhkkhhkhhkhkhkhkhkhkhkkkhkkkkhkhkkkkkhkhhkhkkkkkihkkkkxk

LOCAL ROUTINE —

S8 S Se ne N Se g~

de ke dede ek ok ok odeok okode ok ok dkkokokd kokkodkokokk ok ok ok ok ok ok ok ok ok ok kokdkokkkkkkkokkkkk

;: INPUTS: NONE

; OUTPUTS: NONE

; CALLS: NONE

: DESTROYS: A,F/FS

LOCL: CMD SRECLR ; RESET REM LINE
MVI A, SRECLR ; GET COMMAND
ouT AUXCMD ; SEND TO AUXCMD REGISTER
RET

°
[

$SEJECT

ISIS-I1 8080/80985 MACRO ASSEMBLER, V2.0 MCDULE PAGE 28
*** DRIVERS FOR ZT 85/38 CONTROLLER ***

[\ LoC

53AD
53AF

53B1
53B2
53B5S
£3B6
53B7
53B8
53BB

53BC
53BE
53C@

53C1
53C3

OBJ

3E8F
D353

C5
018C@2
@B
79
B@
C2B553
Cl

3EQF
D353
()

D35C
Co

=1251+
=1252+

=1254+
=1255+

SEQ

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

1253

SOURCE STATEMENT

$INCLUDE (:F1:IFCl14.SRC)

’

.
’

BREEEEESE SR EEEEREEEEEREEEEEEEEEESEREERERSSEEEEERESEIEEEESSES

INTERFACE CLEAR ROUTINE

A E SR RS R R EEEEREREREREERRRRRRRRRRRRRRRRRREREERREEEEEESE]

INPUTS:
OUTUTS:
CALLS:
DESTROYS:

IFCL: CMD

MVI
ouT
DELAY
PUSH
LXI

=1256+2?20043: DCX

=1257+
=1258+
=1259+
=1260+

=1261

=1262+
=1263+

1264
1265

=1266

1267
1268

=1269

1270
1271
1272

- MOV
ORA
JINZ
POP
CMD
MVI
ouT
RET

NONE
NONE

NONE

A,F/FS

sIc ; SEND INTERFACE CLEAR
A,SIC ; GET COMMAND

AUXCMD ; SEND TO AUXCMD REGISTER
5000 : WAIT 5 MS

B : SAVE B

B, 5000%3/23

B ; COUNT DOWN

A,C ; TEST FOR END

B

220043

B RESTORE B

SICLR : RESET IFC
A,SICLR ; GET COMMAND
AUXCMD ; SEND TO AUXCMD REGISTER

$INCLUDE (:F1:ZT85R.SRC)

’

.
1

:***

-
’

.
’

.
‘

ZT85 HARDWARE RESET

’.**‘k****

’
1
-
’
’

.
’

INPUTS:
OUTPUTS:
CALLS:
DESTROYS:

ZT85R: OUT

RET

END

NONE
NONE
NONE
NONE

SREST ; @ RESET 2ZT85

Pl -58Y%
CONNECTOR

r 3 N
Pi 1]
OE
MDo 23 N \MDO__ 11] 4 Apl_lo ap 16 Mo 0
Mol 23 — \MO!__ 12 . 2/, 15 MOI 1
MD2 29 — \MD2__ 13 | 7 8 314 4 \MDZ 1
LSG40 L5138
Wo3 27 J .:g: “ 6 1 4], 13 (103 3
MO+ 25 — V”’- 25 p>— 55 24 H2 ;“’ ! ve pitd o4 M)
M5 23— H; bt 4 él. I 21, 3¢ \M0S i5
MDe 21 A 06 17 Dg 3 7 7 10 ;“2 3 C A 16
Mo? 19 —/ \o7__ 18] b2 2 8 8 9 \M07 17
A28 E E E
1] 1T 576
MAO 1 +5V +5V <7 +EI,V MAO o
MAI 9 SIP RESISTOR | DIP SWITCH | /———HM - 1
MA2 7 PACK 475K % 9 MAZ 8
PR
Y. J
Veso WiFr=——9 s
M50 z 3
— F=-—=4
—_—
MCS! 20 ° _o_’_]
" 2 586 10RD ‘ 0 5
—— L 1"
JORD 5 2))30 :‘)q ’ 8
OWRT 13 44
MWAIT le NC
(2 41°] 30 ———0E| +5v
oPTI 28 — 0 E1 WAA 415K o
MINTRO 14 oo Toris q |
WbE ‘”‘5 N
MINTRI 12— L9t J %
1
MORQT 34 ACCRQ 3 /586 45y n
v 2 a
TorA % NC | 2 435 5 I—‘J\rg +5v
01574 ok
RESET 5 é r_> 3&5 Q D.b_ NC I‘L‘1
1y
ek ‘ 10MHZ +5V i oM BMHZ 8
10 LS74 13
+5V —d5 af R p= +5v
MPST 8 ——@ [_——ll o] Q js
+5v 483 +5V
22"f o ”d Cl-6,10,1l

TANT
&ND 3173 j7 g g
2 |
s lo uf oduf .

+iz2v
-2y

%CER %m
10— NC
24 —— NC

o7 o101l
Dé ploz
05 0103
D4 0104
03 0105
p2 0106
D1 Dlo7
Do DIo8
RS0
Ro!1 TE
RS2
CE
TM59914A
iC
DBIN
WE
EIO
ATN
NRFD
INT DAY
] NOAC
IFC
ACCR@ SRQ
ACCGR REN
RESET
CONTROLLER
o

TI-IEEE 488
ZONNECTOR.
Ji
38 Zip 8 - i o101
L 3 L2 2 D102
36 “ L 3 o103
35 5 75160A | 4 olo4
Eas J 5 3 0105
23 a 18 4 I D106
2 2 3 15 p1o7
El 9 2 e o108
w5
21 nPE ;T : ool 1 SHIELD
,754538° &
_Td =)2 18-24 &ND
9 430 q‘;—
2 "r2
+5¢
2
TE
77 15 0 Py L 5 £ol
- " 1 I ATN
5 7] 15162A |© 7 NRFD
% 6| 75161A 7 DAV
24 8 5 NOAC
13 9 28 4 P IFC
4 B 20 0 sR@
L2 2 3 17 REN
oS¢
) 1
20 T 10013
P 20 Ol4
3 0 0I5
4 0 Ol6
L15R 5 R3320 5001
A B)—-K}—M—— +5V 60 o018
051 MV505+4 70 019
g‘ 80 02
90 o
bo on
It o o023
70 0

NOT USED -m NOT USED

COMPONENT SIDE VIEW OF
IEEE 488 CONNECTOR T

R.E. SHEELY

',;; Ziatech Corporation
ZIATECH CORPORATION "l
RLVISIONS T
F —— ZSBYX. 20 I1EEE 488
MULTIMODULE REV B
fadt [SCAL CRAWING NO
iosepT. 62 | NONE

