TANDBERG TR 2055
 Service Manual

CONTENTS

Changing and cleaning P / B selectors (switches) page 2
Mechanical service. page 3
FM alignment procedure page 4
FM circuit diagrams - Stereo decoder diagram page 7
RIAA/input, circuit diagram page 9
P/B selector, circuit diagram page 9
Power-Amplifier, circuit diagram page 11
Pre-Amp/Filter, circuit diagram. page 12

CHANGING OR CLEANING PUSH BUTTON SWITCHES

Occasionally the push button switches will need to be cleaned and lubricated to maintain trouble free action. A good cleaning agent should be applied sparingly with a fine brush. We recommend "Tandberg Klüberfett" or "Wählerfett" from our Service Department.
Alcohol or methylated spirit may also be used for cleaning and vaseline may be used for lubrication afterwards.

NOTE! Avoid touching the contacts with your finger it could cause corrosion.
Avoid using cleaning agents that could attack the metal parts.

NOTE! We have developed our own cleaning/lubricating agent, "Tandberg Contact Spray" in aerosols, and we recommend it for all types of contacts. These aerosols can be supplied from our district offices and subsidiary companies.

NOTE! Slide switches (mode selectors) are available complete as a replacement part.
If necessary, the switch can be cleaned, and the plunger or the contact unit can be changed. For these operations the switch must be dismantled.

DISMANTLING THE CONTACT CASE/SLIDE CONTACTS

- Unsolder the contact case from the solder side.
- Push the plunger about half way in and move it slightly forwards and backwards and at the same time grip the contact case solder tags with flat-nose pliers (see figure). The back end of the plunger must lie edge to edge with the contact case as shown by $*$ in the figure.
- Pull the contact case out.
- Pull the sliding contact out of the case.

DISMANTLING THE PLUNGER

Remove all four contact cases as described above.

- Move the interlocking plate to the left (seen from the front) to release the plunger, and pull the plunger out. See figure.

DISMANTLING THE PLUNGER

- Pull the spring slightly forward so that the locking clip is free at the edge.
- Use tweezers as shown in the figure.
- Press the plunger right in.

Push the locking clip backward and lift it up.
NB! The locking pin lies loose in the locking clip.

- The plunger can be pulled out.

NB! The spring contacts on the plunger are loose.
The spring is slightly conical so that if you remove it from the plunger, take care to replace it with the smallest end against front of the plunger.

1. Remove the 3 screws from each side panel.
2. Remove the 2 screws from back panel.
3. Lift off the top panel.

Remove the five screws in the printed board.
2. Remove the screw in the small bakelite panel eixed to the heat sink.
3. Pull the board slightly forwards so that the knobs are free from the back panel.
Take off the knobs
5. Pull the board off sideways

* NOTE! When re-assembling you are advised to tape the
knobs securely before the board is screwed into place. See figure.

Ten changing the output transistors you should re the complete corrugated heat sink for the channel in question Remove the bottom cover.

1. Remove the five screws in the heat sink from under neath
2. Pull the heat sink up

NOTE! $Q 810$ will come with the heat sink as it is pulled up but the thermal fuse will remain hanging on the AF board. NOTE! When assembling the output transistors we recommend to use "Thermal Compound Wakefield" on both sides of the mica washer. See figure.

Compoun sue be obtained from our Service epartement. Use ordering number: 340245 . We do not recommend the use of "Silicon grease" If you must use Silicon grease, do not get it on the solder joints.

LIGNMENT OF

STEREO-DECODER

Equipment needed:

FM stereo generator
Oscilloscope with sensitivity $5 \mathrm{mV} / \mathrm{cm}$
Frequency counter
elective voltmeter or a.c. voltmeter and 20 kHz low pass filter.

Complete alignment

The decoder oscillator: 19 kHz (see paragraph 1).
The decoder oscillator: 19 kHz (see p
Muting and stereo/mono switching threshold (see paragraph 3) Definition: Pilotsignal $19 \mathrm{kHz}(\pm 2 \mathrm{~Hz}$).

1. The decoder oscillator: $19 \mathbf{k H z}$

Apply a 1 mV signal from the FM stereo generator, unmodulated. (No pilot signal applied).

Adjust R304 so that the frequency counter connected to M301 indicates 19 kHz

Alternative method without the frequency counter
Apply a 1 mV signal from the FM stereo generator, modulation: 10% pilotsignal.
Turn R304 slowly from one extreme to the point where the tereo indicator lights up. Turn further in the same directio until the light goes out. Then turn in the opposite direction to set R304 in the middle of the range where the indicator lights.
2. Channel separation:

Apply a 1 mV signal from the FM stereo generator, modulation: 10% pilotsignal. Modulate the right channel with 1 kHz at 30% deviation. Connect the oscilloscope to the TAPE OUT (L) socket.
Adjust R323 to minimum deflection on the scope. Adjust R323 to minimum deflection on the scope.
Check this adjustment with the 1 kHz signal in the lef channel and measure the output of the right channel.

Alternative method without the stereo generator

Adjust R323 for minimum signal in left (right) speaker when receiving a test FM stereo, transmission with signal in the right (left) channel only.
3. Muting and stereo/mono switching threshold

Muting: Apply a $4 \mu \mathrm{~V}$ signal from the FM-generator to the 75 ohm antenna input. Adjust the TUNING METER on the fully clockwise (seen from component side). Turn R229 slowly counterclockwise until the signal is recovered.
Stereo/mono switching threshold: Set R231 fully counter clockwise (seen from component side).

Apply $0 \mu \mathrm{~V}$ from the FM stereo generator to the 75 ohm antenna input modulated with 10% pilot signal.
Increase the signal from the FM -stereo generator from $0 \mu \mathrm{~V}$ to $10 \mu \mathrm{~V}$. Turn R231 slowly clockwise until the stereoindicator light comes on.

FM-alignment procedure

Step	Alignment procedure	Receiver	Generator M			Oscilloscope M	Circuits		Notes
		Frequency	Frequency	Deviation	Applied to	Connected to	Adjust	$\begin{aligned} & \text { Board } \\ & \quad \text { No. } \\ & \hline \end{aligned}$	
A^{A}	25 V for varicap						R616	A6	Meter connected to M13. A6 side 9. Adjust to 25 V DC reading.
A^{B}	FM - osc.	$\begin{array}{r} 90 \mathrm{MHz} \\ 105 \mathrm{MHz} \end{array}$	$\begin{array}{r} 90 \mathrm{MHz} \\ 105 \mathrm{MHz} \end{array}$	$\pm 22.5 \mathrm{kHz}$	* M 1	$* * \mathrm{M} 4$ via diode- probe. Fig. 3	$--\frac{\mathrm{R} 204}{\mathrm{C} 118}---$	$\begin{aligned} & \stackrel{\mathrm{A}}{ }^{\mathrm{A}}-2 \end{aligned}$	Check the position of the scale cursor (see Fig.4). Check 95 MHz and 100 MHz .
2	Aerial circuit	$\begin{array}{r} 90 \mathrm{MHz} \\ 105 \mathrm{MHz} \end{array}$	$\begin{array}{r} 90 \mathrm{MHz} \\ 105 \mathrm{MHz} \end{array}$	$\pm 200 \mathrm{kHz}$	* M 1	$\underset{\text { probe. Fig. } 3}{ }$	$\begin{aligned} & \text { L101-L102-L103 } \\ & \text { C103-C107-C110 } \end{aligned}$	A1	Adjust for max. curve height (see Fig.1).
3	FM - IF	90 MHz	90 MHz	$\pm 200 \mathrm{kHz}$	* M 1	$\begin{gathered} * * \text { M } 4 \text { via diode- } \\ \text { probe. Fig. } 3 \end{gathered}$	L106-L107	A1	Adjust for max. curve height and symmetry (see Fig. 1) FM - IF $10.6-10.8 \mathrm{MHz}$.
4	Discriminator	90 MHz	90 MHz	$\pm 75 \mathrm{kHz}$	$\begin{aligned} & { }^{*} \mathrm{M} 1 \\ & 1 \mathrm{mV} / 75 \mathrm{ohm} \end{aligned}$	$\overline{* * *} \overline{\mathrm{M}} \overline{\mathrm{via}} \overline{\mathrm{Fig}} . \overline{3}$	L201-L202	A2	Dist./voltm. connected to M5, TAPE OUTPUT socket: Adjust L201 for max. output voltage. Aftewards adjust L202 for \min. output voltage and min . distortio See Fig.2.
5	Center tuning meter	90 MHz	90 MHz	$\pm 75 \mathrm{kHz}$	$\begin{aligned} & { }^{*} \mathrm{M} 1 \\ & 1 \mathrm{mV} / 75 \text { ohm } \end{aligned}$		R239	A2	Adjust for center position of the pointer. When the receiver is tuned to min. distortion. See step 4.
$6^{6^{A}}$	Signal meter	90 MHz	90 MHz	$\pm 0 \mathrm{kHz}$	$\frac{\text { No signal }}{\mathrm{M}_{1}^{*}, 1 \mathrm{mV} / 75 \mathrm{ohm}}$		$--\frac{\mathrm{R} 236}{\mathrm{R} 232}--$	A2	Adjust to 0, on SIGNAL METER Adjust to 20, on SIGNAL METER

NOTE! The adjustments for muting and stereo/mono switching threshold interact.

Alternative method: Stereo/mono switching threshold.
If an FM -stereo generator is not available an ordinary FM generator can be used for this adjustment.
Apply a $10 \mu \mathrm{~V}$ signal from the generator to the 75 ohm antenna input, (10\%) (check the modulation frequency with a counter). Proceed as explained above.

Fig. 1. FM-IF curve
Signal: $\mathrm{U}_{\mathrm{in}}=150 \mu \mathrm{~V} / 75$ ohms, $\mathrm{f}=90 \mathrm{MHz}$. Dev. $= \pm 200 \mathrm{kHz}$ applied to M1 via ant. plug Oscilloscope: Vert.: $5 \mathrm{mV} / \mathrm{dev}$., Hor.: $50 \mathrm{kHz} / \mathrm{dev}$. connected to M4 via diodeprobe (Fig. 3).

Fig. 2. Discriminator.
signal: $\mathrm{U}_{\text {in }}=2 \mu \mathrm{~V} / 75$ ohms, $\mathrm{f}=90 \mathrm{MHz}$.
Dev. $= \pm 200 \mathrm{kHz}$ applied to M1 via ant. plug
Oscilloscope: Vert.: $0.2 \mu \mathrm{~V} / \mathrm{dev}$. Hor.: $50 \mathrm{kHz} / \mathrm{dev}$.
connected to M6.

Fig. 3. Diodeprobe.

Seen from the component side.

Seen from the solder side.

FAULT FINDING ON THE FM TUNER
Turn the tuner unit up into the vertical position.

* Remove the screw shown in the figure. Remove the cover

The transistors are seen from underneath

A10
 Seen from the solder side.

PROGRAM SELECT/VOLTAGE REG

een from the component side

A6

een from the solder side.

A10

15 PROGRAM $\overline{\text { SELECT. }} \overline{\text { VOLTAGE }} \overline{\text { REG. }} \overline{\text { I }}$

All selectors are shown in unoperated position

A8

Seen from the component side.

The transistors are seen
from underneath

POWER AMPLIFIER

Seen from the solder side.

The transistor are seen from underneath
(20

All selectors are shown in unoperated position

